题目
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
输入
第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。
输出
输出N行,每行一个整数,第i行输出C[i-1]。
样例输入
5 3 1 2 4 1 1 2 4 1 4
样例输出
24 12 10 6 1
分析
分析题目,将题中给出的式子简单变换,将b数组反转:
Ck=∑i=kn(ai⋅bi−k)→Ck=∑i=kn(ai⋅bn−i−k)
将c数组反转:
Cn−k=∑i=kn(ai⋅bk−i)
即转化成了卷积的形式,直接FFT求解即可
完整代码
#include<bits/stdc++.h>
#define pi acos(-1.0)
#define maxn 300010
using namespace std;
int n;
complex<
double> a[maxn], b[maxn];
inline int read()
{
char ch;
int read =
0, sign =
1;
do
ch = getchar();
while ((ch<
'0'||ch>
'9')&&ch!=
'-');
if (ch ==
'-') sign = -
1, ch = getchar();
while (ch >=
'0' && ch <=
'9')
{
read = read *
10 + ch -
'0';
ch = getchar();
}
return read*sign;
}
inline int Power2(
int x)
{
int x0;
for (x0 =
1; x0 < x; x0 <<=
1);
return x0;
}
inline int lg(
int n)
{
int l =
0;
if (n ==
0)
return l;
for (
int x0 =
1; x0 <= n; x0 <<=
1) l++;
return l;
}
inline int rev(
int x,
int n)
{
int out =
0;
while (n--) out = (out + (x &
1)) <<
1, x >>=
1;
return out>>
1;
}
void FFT(
complex<
double> a[],
int n,
int flag)
{
complex<
double> A[n+
1];
for (
int i =
0, l = lg(n -
1); i < n; ++i) A[rev(i, l)] = a[i];
#ifdef DEBUG
int l=lg(n-
1);
cerr<<
"l="<<l<<endl;
for(
int i=
0;i<n;++i)
cerr<<rev(i,l)<<
" ";
cerr<<endl;
#endif
for (
int i =
2; i <= n; i <<=
1)
{
complex<
double> dw(
cos(
2*pi/i),
sin(flag*
2*pi/i));
for (
int j =
0; j < n; j += i)
{
complex<
double> w(
1.0,
0);
for (
int k =
0; k < (i >>
1); k++, w *= dw)
{
complex<
double> u = A[j + k];
complex<
double> t = w*A[j + k + (i >>
1)];
A[j + k] = u + t;
A[j + k + (i >>
1)] = u - t;
}
}
if (flag == -
1)
for (
int i =
0; i < n; i++) a[i].real() =
int(A[i].real() / n +
0.5);
else
for (
int i =
0; i < n; i++) a[i] = A[i];
}
}
int main()
{
n = read();
for (
int i =
0; i < n; ++i)
a[n-i-
1] = read(), b[i] = read();
#ifdef DEBUG
for(
int i=
0;i<n;++i)
cerr<<a[i].real()<<
" ";
cerr<<endl;
for(
int i=
0;i<n;++i)
cerr<<b[i].real()<<
" ";
cerr<<endl;
#endif
int length = Power2(n);
#ifdef DEBUG
cerr<<
"length="<<length<<endl;
#endif
FFT(a, length,
1);
FFT(b, length,
1);
for (
int i =
0; i < length; ++i) a[i] *= b[i];
FFT(a, length, -
1);
for (
int i = n-
1; i >=
0; --i)
cout << a[i].real() << endl;
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-6308.html