HDU 3400 Line belt (三分套三分)

    xiaoxiao2021-03-25  121

    题目链接:这里 题意:就是给你两条线段AB , CD ,一个人在AB以速度p跑,在CD上以q跑,在其他地方跑速度是r。问你从A到D最少的时间。 解法: 先三分AB上的点,再三分CD上的点即可。 证明: 设E在AB上,F在CD上。 令人在线段AB上花的时间为:f = AE / p,人走完Z和Y所花的时间为:g = EF / r + FD / q。 f函数是一个单调递增的函数,而g很明显是一个先递减后递增的函数。两个函数叠加,所得的函数应该也是一个先递减后递增的函数。故可用三分法解之。

    //HDU 3400 #include <bits/stdc++.h> using namespace std; const double eps = 1e-8; struct point{ double x, y; point(){} point(double x, double y) : x(x), y(y) {} }a, b, c, d, e, f; int t; double p, q, r; double getdis(point a1, point b1){ return sqrt((a1.x - b1.x)*(a1.x - b1.x) + (a1.y - b1.y)*(a1.y - b1.y)); } double cal(double alpha){ f.x = c.x + (d.x - c.x) * alpha; f.y = c.y + (d.y - c.y) * alpha; return getdis(f, d) / q + getdis(e, f) / r; } double sanfen2(double alpha){ e.x = a.x + (b.x - a.x) * alpha; e.y = a.y + (b.y - a.y) * alpha; double l = 0, r = 1.0, mid, midd, cost; while(r - l > eps){ mid = (l + r) / 2; midd = (mid + r) / 2; cost = cal(mid); if(cost <= cal(midd)) r = midd; else l = mid; } return getdis(a, e) / p + cost; } double sanfen1(){ double l = 0.0, r = 1.0, mid, midd, ret; while(r - l > eps){ mid = (l + r) / 2; midd = (mid + r) / 2; ret = sanfen2(mid); if(ret <= sanfen2(midd)) r = midd; else l = mid; } return ret; } int main() { int t; scanf("%d", &t); while(t--){ scanf("%lf%lf%lf%lf", &a.x, &a.y, &b.x, &b.y); scanf("%lf%lf%lf%lf", &c.x, &c.y, &d.x, &d.y); scanf("%lf%lf%lf", &p, &q, &r); printf("%.2f\n", sanfen1()); } return 0; }
    转载请注明原文地址: https://ju.6miu.com/read-6426.html

    最新回复(0)