性能调优-给spark作业分配更多的资源

    xiaoxiao2021-03-25  139

    性能调优: 给spark作业分配更多的资源! 1,分配更多资源!性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了 分配更多资源:性能调优的王道,就是增加和分配更多的资源,性能和速度上的提升,是显而易见的; 基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后, 进行性能调优的时候,首先第一步,我觉得,就是要来调节最优的资源配置;在这个基础之上, 如果说你的spark作业,能够分配的资源达到了你的能力范围的顶端之后,无法再分配更多的资源了, 公司资源有限;那么才是考虑去做后面的这些性能调优的点。 问题: 1、分配哪些资源? 2、在哪里分配这些资源? 3、为什么多分配了这些资源以后,性能会得到提升? 答案: 1、分配哪些资源?executor、cpu per executor、memory per executor、driver memory 2、在哪里分配这些资源?在我们在生产环境中,提交spark作业时,用的spark-submit shell脚本, 里面调整对应的参数 /usr/local/spark/bin/spark-submit \ --class cn.spark.sparktest.core.WordCountCluster \ --num-executors 3 \  配置executor的数量 --driver-memory 100m \  配置driver的内存(影响很大) --executor-memory 100m \  配置每个executor的内存大小 --executor-cores 3 \  配置每个executor的cpu core数量 /usr/local/SparkTest-0.0.1-SNAPSHOT-jar-with-dependencies.jar \ 3、调节到多大,算是最大呢? 第一种,Spark Standalone,公司集群上,搭建了一套Spark集群,你心里应该清楚每台机器还能够 给你使用的,大概有多少内存,多少cpu core;那么,设置的时候,就根据这个实际的情况, 去调节每个spark作业的资源分配。比如说你的每台机器能够给你使用4G内存,2个cpu core; 20台机器;executor,20;平均每个executor:4G内存,2个cpu core。 第二种,Yarn。资源队列。资源调度。应该去查看,你的spark作业,要提交到的资源队列, 大概有多少资源?500G内存,100个cpu core;executor,50;平均每个executor:10G内存,2个cpu core。 设置队列名称:spark.yarn.queue default 一个原则,你能使用的资源有多大,就尽量去调节到最大的大小(executor的数量,几十个到上百个不等; executor内存;executor cpu core) 4、为什么调节了资源以后,性能可以提升? 增加executor: 如果executor数量比较少,那么,能够并行执行的task数量就比较少,就意味着, 我们的Application的并行执行的能力就很弱。 比如有3个executor,每个executor有2个cpu core,那么同时能够并行执行的task,就是6个。 6个执行完以后,再换下一批6个task。 增加了executor数量以后,那么,就意味着,能够并行执行的task数量,也就变多了。比如原先是6个, 现在可能可以并行执行10个,甚至20个,100个。那么并行能力就比之前提升了数倍,数十倍。 相应的,性能(执行的速度),也能提升数倍~数十倍。 有时候数据量比较少,增加大量的task反而性能会降低,为什么? 增加每个executor的cpu core: 也是增加了执行的并行能力。原本20个executor,每个才2个cpu core。能够并行执行的task数量, 就是40个task。 现在每个executor的cpu core,增加到了5个。能够并行执行的task数量,就是100个task。 执行的速度,提升了2.5倍。 SparkContext,DAGScheduler,TaskScheduler,会将我们的算子,切割成大量的task, 提交到Application的executor上面去执行。 增加每个executor的内存量: 增加了内存量以后,对性能的提升,有三点: 1、如果需要对RDD进行cache,那么更多的内存,就可以缓存更多的数据,将更少的数据写入磁盘, 甚至不写入磁盘。减少了磁盘IO。 2、对于shuffle操作,reduce端,会需要内存来存放拉取的数据并进行聚合。如果内存不够, 也会写入磁盘。如果给executor分配更多内存以后,就有更少的数据,需要写入磁盘, 甚至不需要写入磁盘。减少了磁盘IO,提升了性能。 3、对于task的执行,可能会创建很多对象。如果内存比较小,可能会频繁导致JVM堆内存满了, 然后频繁GC,垃圾回收,minor GC和full GC。(速度很慢)。内存加大以后,带来更少的GC,垃圾回收, 避免了速度变慢,速度变快了。
    转载请注明原文地址: https://ju.6miu.com/read-6455.html

    最新回复(0)