Description:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right. Integers in each column are sorted in ascending from top to bottom.
问题描述:
搜索二维矩阵I的变体,矩阵中每行元素递增,每列元素也是递增的。在矩阵中寻找目标元素。。。
解法一:
思路:
我们知道左上角一定是最小元素,右下角一定是最大元素。。由此可以从左下角元素与目标元素比较, 如果target > 则去掉这列 如果target < 则去掉这行
Code:
public class Solution {
public boolean
searchMatrix(
int[][] matrix,
int target) {
if (matrix ==
null || matrix.length ==
0){
return false;
}
if (matrix[
0] ==
null || matrix[
0].length ==
0){
return false;
}
int row = matrix.length;
int col = matrix[
0].length;
int x = row -
1;
int y =
0;
while (x >=
0 && y < col){
if (target == matrix[x][y]){
return true;
}
else if (target > matrix[x][y]){
y++;
}
else if (target < matrix[x][y]){
x--;
}
}
return false;
}
}
转载请注明原文地址: https://ju.6miu.com/read-6571.html