POJ 1328 Radar Installation (贪心,区间选点问题)

    xiaoxiao2021-03-26  26

    Radar Installation Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 51131 Accepted: 11481

    Description

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.  We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.    Figure A Sample Input of Radar Installations

    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.  The input is terminated by a line containing pair of zeros 

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2 1 2 -3 1 2 1 1 2 0 2 0 0

    Sample Output

    Case 1: 2 Case 2: 1

    Source

    Beijing 2002

    解题思路:

    题意为,在一个坐标系中,x中代表海岸,x轴以上有n个点,代表着n个岛屿,在x轴上建雷达,一直雷达的覆盖范围为半径为d的圆,求在x轴上最少建多少个雷达,才能把全部的岛屿覆盖起来,如果不能覆盖,输出-1.

    区间选点问题为  给定 n个闭区间,求在里面选择最少的点使得每个区间里面都包含至少一个点(一个点可以在不同的区间)。   比如下图。

    贪心策略为  把n个区间先按照右端点从小到大进行排序,如果端点相同,按照左端点从大到小进行排序。首先选择第一个区间的右端点。如果以后的区间左端点大于当前选择的端点值时,使得当前选择的端点值改变为这个以后的区间的右端点值。 比如 当前temp是 23  遇到一个区间左端点 25 右端点 27,让temp=27.(选择了一个新点)

    回到本题上来,要求建造最短的雷达。  首先对n个岛屿进行画圆,与x轴有两个交点,这样每个岛屿都对应了一个区间(只要雷达建在这个区间内,该岛屿就一定能被覆盖到)。圆的方程(x-a)²+(y-b)²=r² ,在本题中,b始终是0,因为在x轴上。判断无解的条件为r<y 。我们得到了n个区间,这样问题也就转化为了在这n个区间里面选择尽可能少的点,使得这n个区间中每个区间都至少有一个点。 按照上面的方法做就可以了。

    参考:

    http://blog.csdn.NET/dgq8211/article/details/7534776

    代码:

    [cpp]  view plain  copy #include <iostream>   #include <string.h>   #include <algorithm>   #include <cmath>   using namespace std;   const int maxn=1010;      struct N   {       double l,r;   }interval[maxn];      bool cmp(N a,N b)//排序   {       if(a.r<b.r)           return true;       else if(a.r==b.r)       {           if(a.l>b.l)               return true;           return false;       }       return false;   }         int main()   {       double x,y;       int n,d;       int c=1;       while(cin>>n>>d&&(n||d))       {           bool ok=1;           for(int i=1;i<=n;i++)           {               cin>>x>>y;               double temp=d*d-y*y;               if(temp<0||d<0)//这样的话就得判断d是否小于0,如果 temp= d-y 这样写的话,就不用判断d是否小于0,坑啊!!                   ok=0;               else if(ok)               {                   interval[i].l=x-sqrt((double)d*d - (double)y*y);                   interval[i].r=x+sqrt((double)d*d - (double)y*y);               }           }           if(!ok)           {               cout<<"Case "<<c++<<": "<<-1<<endl;               continue;           }           sort(interval+1,interval+1+n,cmp);           int cnt=1;           double temp=interval[1].r;           for(int i=2;i<=n;i++)           {               if(temp<interval[i].l)               {                   cnt++;                   temp=interval[i].r;               }                          }          /* for(int i=2;i<=n;i++)          {              if(interval[i].l>temp)              {                  cnt++;                  temp=interval[i].l;              }          }*/   //一开始写成了这个,不对  比如区间 [1,2]  [4,8]  [6,9],正确的应该是选择2,8这两个点,而上面这个则选择了 2,4 6,显然不对           cout<<"Case "<<c++<<": "<<cnt<<endl;       }       return 0;   }  
    转载请注明原文地址: https://ju.6miu.com/read-659027.html

    最新回复(0)