F - Longest Ordered Subsequence POJ - 2533

    xiaoxiao2021-03-26  27

    Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536KTotal Submissions: 49504 Accepted: 21978

    Description

    A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1,  a2, ...,  aN) be any sequence ( ai1,  ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8). Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7 1 7 3 5 9 4 8

    Sample Output

    4

    Source

    Northeastern Europe 2002, Far-Eastern Subregion 最简单的最长递增子序列,wa了很多次,后来明白结果不一定是dp{ n-1 ],应该所有的最大值,忽略了。。谨记!!

    #include<stdio.h> #include<string.h> #include<math.h> #include<string> #include<algorithm> #include<queue> #include<vector> #include<map> #include<set> typedef long long ll; using namespace std; int main() { int ans,dp[10005],n,a[10005],i,j; scanf("%d",&n); for(i=0;i<n;i++) scanf("%d",&a[i]),dp[i]=1; for(i=1;i<n;i++) { for(j=i-1;j>=0;j--) { if(a[i]>a[j]) { dp[i]=max(dp[i],dp[j]+1); } } } ans=dp[0]; for(i=1;i<n;i++) ans=max(ans,dp[i]); printf("%d\n",ans); return 0; }

    转载请注明原文地址: https://ju.6miu.com/read-659631.html

    最新回复(0)