题目
Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive. Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.
解法
因为我们要用排序来优化求解过程,但是排序之后的数组是不能用来求解的,这样我们就采用归并排序的思想,在排序之前求出左右两边数组的个数,然后再求整体的。 这里我们的排序对象是前缀求和数组,在归并排序的合并阶段,我们有左数组和右数组,且左和右数组都是排好序的,所以我们可以用i遍历左数组,j,k两个指针分别取在右数组搜索,使得:
sums[j] - sums[i] < upper sums[k] - sums[i] >= lower 那么此时,我们就找到了j-k个符合要求的子数组。
由于左右数组都是排好序的,所以当i递增之后,j和k的位置不用从头开始扫描。
最后还有一点需要注意的就是,为了防止溢出,我们的vector容纳的是long long型元素。
代码
class Solution {
public:
long long sum[
100000];
long long tmp[
100000];
int gao(
int st,
int ed,
int lower,
int upper ){
if( st >= ed )
return 0;
int mid = st + ( ed - st ) /
2;
int cnt = gao( st, mid, lower, upper ) + gao( mid +
1, ed, lower, upper );
int j = mid +
1, k = mid +
1;
for(
int i = st; i <= mid; i++ ){
while( j <= ed &&
sum[j] -
sum[i] <= upper ) j++;
while( k <= ed &&
sum[k] -
sum[i] < lower ) k++;
cnt += j - k;
}
int p = st, q = mid +
1, t = st;
while( p <= mid && q <= ed ){
if(
sum[p] <=
sum[q] ){
tmp[t++] =
sum[p++];
}
else{
tmp[t++] =
sum[q++];
}
}
while( p <= mid ){
tmp[t++] =
sum[p++];
}
while( q <= ed ){
tmp[t++] =
sum[q++];
}
for(
int i = st; i <= ed; i++ ){
sum[i] = tmp[i];
}
return cnt;
}
int countRangeSum(vector<
int>& nums,
int lower,
int upper) {
sum[
0] =
0;
for(
int i =
0; i < (
int)nums.size(); i++ ){
sum[i+
1] =
sum[i] + nums[i];
}
return gao(
0, (
int)nums.size(), lower, upper );
}
};
转载请注明原文地址: https://ju.6miu.com/read-660159.html