机器学习算法应用中常用技巧-1

    xiaoxiao2021-03-26  23

    参考:Udacity ML纳米学位

    1. 取样

    数据量很大的时候,想要先选取少量数据来观察一下细节。

    indices = [100,200,300] # 把sample原来的序号去掉重新分配 samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True) print "Chosen samples:" display(samples)

    2. Split数据

    用 sklearn.cross_validation.train_test_split 将数据分为 train 和 test 集。 sklearn

    from sklearn import cross_validation X = new_data y = data['Milk'] X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.25, random_state = 0) print len(X_train), len(X_test), len(y_train), len(y_test)

    分离出 Features & Label

    有时候原始数据并不指出谁是label,自己判断

    # Store the 'Survived' feature in a new variable and remove it from the dataset outcomes = full_data['Survived'] data = full_data.drop('Survived', axis=1)

    3. 用 train 来训练模型,用 test 来检验

    用 Decision Tree 来做个例子 sklearn

    from sklearn import tree regressor = tree.DecisionTreeRegressor() regressor = regressor.fit(X_train, y_train) score = regressor.score(X_test, y_test)

    4. 判断 feature 间的关联程度

    pd.scatter_matrix(data, alpha = 0.3, figsize = (14, 8), diagonal = 'kde');

    5. scaling

    当数据不符合正态分布的时候,需要做 scaling 的处理。常用的方法是取log。

    pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');

    scaling前后对比图:

    6. Outliers

    方法之一是 Tukey 方法,小于 Q1 – (1.5 × IQR) 或者大于 Q3 + (1.5 × IQR) 就被看作是outlier。

    先把各个 feature 的 outlier 列出来并排好序:

    for feature in log_data.keys(): Q1 = np.percentile(log_data[feature], 25) Q3 = np.percentile(log_data[feature], 75) step = 1.5 * (Q3 - Q1) print "Outliers for feature '{}':".format(feature) print Q1, Q3, step display(log_data[~((log_data[feature]>=Q1-step) & (log_data[feature]<=Q3+step))].sort([feature]))

    再配合 boxplot 观察,到底哪些 outlier 需要被移除:

    plt.figure() plt.boxplot([log_data.Fresh, log_data.Milk, log_data.Grocery, log_data.Frozen, log_data.Detergents_Paper, log_data.Delicassen], 0, 'gD'); 如果帮到你了,请赞赏支持:
    转载请注明原文地址: https://ju.6miu.com/read-663349.html

    最新回复(0)