Sumsets Time Limit: 2000MS Memory Limit: 200000KTotal Submissions: 17820 Accepted: 6984
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).Input
A single line with a single integer, N.Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).Sample Input
7Sample Output
6Source
USACO 2005 January Silver这一题想到了思路很简单,但是却很有意思。
题目大意是将一个数表示成二进制的和,问总共有多少种表达的方式。
思路是对于n为奇数的情况,因为拆开之后一定有个1,所以和n-1的情况相同。n为偶数的情况时,又分为两种情况,有1和无1,有1时和n-2相同(因为分出两个1),无1和n/2相同(因为所有的数都可以被2整除)。
#include <iostream> #include <cstdio> using namespace std; const int maxn = 1e6 + 4; const int mode = 1e9; int dp[maxn]; int main() { int n; dp[1] = 1; dp[2] = 2; scanf("%d", &n); for(int i = 3; i <= n; ++i) { if(i % 2 == 1) { dp[i] = dp[i - 1]; } else { dp[i] = (dp[i - 2] + dp[i / 2]) % mode; } } printf("%d\n", dp[n]); return 0; }
