分类算法:kNN

    xiaoxiao2021-03-27  33

    kNN概述

    cd C:\Users\exuejwa\Documents\mlia\machinelearninginaction\Ch02 C:\Users\exuejwa\Documents\mlia\machinelearninginaction\Ch02 from numpy import * import operator from os import listdir def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labels group, labels = createDataSet() def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]

    运行结果

    classify0([0, 0], group, labels, 3) 'B'

    示例:使用kNN改进约会网站的配对效果

    def file2matrix(filename): fr = open(filename) arrayOLines = fr.readlines() numberOfLines = len(arrayOLines) returnMat = zeros((numberOfLines, 3)) classLabelVector = [] index = 0 for line in arrayOLines: line = line.strip() listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat, classLabelVector datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') datingDataMat[0:10] array([[ 4.09200000e+04, 8.32697600e+00, 9.53952000e-01], [ 1.44880000e+04, 7.15346900e+00, 1.67390400e+00], [ 2.60520000e+04, 1.44187100e+00, 8.05124000e-01], [ 7.51360000e+04, 1.31473940e+01, 4.28964000e-01], [ 3.83440000e+04, 1.66978800e+00, 1.34296000e-01], [ 7.29930000e+04, 1.01417400e+01, 1.03295500e+00], [ 3.59480000e+04, 6.83079200e+00, 1.21319200e+00], [ 4.26660000e+04, 1.32763690e+01, 5.43880000e-01], [ 6.74970000e+04, 8.63157700e+00, 7.49278000e-01], [ 3.54830000e+04, 1.22731690e+01, 1.50805300e+00]]) datingLabels[0:10] [3, 2, 1, 1, 1, 1, 3, 3, 1, 3] import matplotlib import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels)) <matplotlib.collections.PathCollection at 0x799a908> plt.show()

    归一化数值

    newValue = (oldValue - min) / (max - min)

    def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) return normDataSet, ranges, minVals normMat, ranges, minVals = autoNorm(datingDataMat) normMat array([[ 0.44832535, 0.39805139, 0.56233353], [ 0.15873259, 0.34195467, 0.98724416], [ 0.28542943, 0.06892523, 0.47449629], ..., [ 0.29115949, 0.50910294, 0.51079493], [ 0.52711097, 0.43665451, 0.4290048 ], [ 0.47940793, 0.3768091 , 0.78571804]]) ranges array([ 9.12730000e+04, 2.09193490e+01, 1.69436100e+00]) minVals array([ 0. , 0. , 0.001156]) # 分类器针对约会网站的测试代码 def datingClassTest(): hoRatio = 0.10 datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]) if (classifierResult != datingLabels[i]): errorCount += 1.0 print "the total error rate is: %f" % (errorCount/float(numTestVecs))

    运行结果

    datingClassTest() the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 3 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 3, the real answer is: 3 the classifier came back with: 2, the real answer is: 2 the classifier came back with: 1, the real answer is: 1 the classifier came back with: 3, the real answer is: 1 the total error rate is: 0.050000 # 约会网站预测函数 def classifyPerson(): resultList = ['not at all','in small doses','in large doses'] percentTats = float(raw_input("percentage of time spent playing video games?")) ffMiles = float(raw_input("frequent flier miles earned per year?")) iceCream = float(raw_input("liters of ice cream consumed per year?")) datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) inArr = array([ffMiles, percentTats, iceCream]) classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3) print "You will probably like this person: ", resultList[classifierResult - 1]

    运行结果

    classifyPerson() percentage of time spent playing video games?10 frequent flier miles earned per year?10000 liters of ice cream consumed per year?0.5 You will probably like this person: in small doses

    示例:手写识别系统

    def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect testVector = img2vector('testDigits/0_13.txt') testVector[0,0:31] array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) testVector[0][32:63] array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) # 手写数字识别系统的测试代码 def handwritingClassTest(): hwLabels = [] trainingFileList = listdir('trainingDigits') m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) testFileList = listdir('testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr) if (classifierResult != classNumStr): errorCount += 1.0 print "\nthe total number of errors is: %d" % errorCount print "\nthe total error rate is: %f" % (errorCount/float(mTest))

    运行结果

    handwritingClassTest() the classifier came back with: 0, the real answer is: 0 the classifier came back with: 0, the real answer is: 0 ...... the classifier came back with: 9, the real answer is: 9 the classifier came back with: 9, the real answer is: 9 the total number of errors is: 11 the total error rate is: 0.011628
    转载请注明原文地址: https://ju.6miu.com/read-664430.html

    最新回复(0)