#coding=utf-8
import cv2
#cv2.__version__==3.2.0
import numpy
as np
#Detect face
# face_cascade =cv2.CascadeClassifier('./data/haarcascades/haarcascade_frontalface_alt.xml')
# scaling_factor = 1
# img = cv2.imread('peple.bmp', cv2.IMREAD_ANYCOLOR)
# frame = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA)
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
# for (x,y,w,h) in face_rects:
# cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 1)
# cv2.imshow('Face Detector', frame)
# cv2.waitKey()
#detect eye
face_cascade =cv2.CascadeClassifier(
'./data/haarcascades/haarcascade_frontalface_alt.xml')
eye_cascade = cv2.CascadeClassifier(
'./data/haarcascades/haarcascade_eye.xml')
if face_cascade.empty():
raise IOError(
'Unable to load the face cascade classifier xml file')
scaling_factor =
1
img = cv2.imread(
'peple.bmp', cv2.IMREAD_ANYCOLOR)
frame = cv2.resize(img,
None,
fx=scaling_factor,
fy=scaling_factor,
interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray,
1.3,
5)
for (x,y,w,h)
in faces:
print(x,y,w,h)
cv2.rectangle(frame, (x,y), (x+w,y+h), (
0,
255,
0),
1)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (x_eye,y_eye,w_eye,h_eye)
in eyes:
print(
'eye:',x_eye,y_eye,w_eye,h_eye)
center = (
int(x_eye +
0.5*w_eye),
int(y_eye +
0.5*h_eye))
radius =
int(
0.3 * (w_eye + h_eye))
color = (
0,
255,
0)
thickness =
3
cv2.circle(roi_color, center, radius, color, thickness)
cv2.imshow(
'Eye Detector', frame)
cv2.waitKey()
转载请注明原文地址: https://ju.6miu.com/read-664859.html