题目:Minimum Moves to Equal Array Elements II
Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
You may assume the array's length is at most 10,000.
Example:
Input: [1,2,3] Output: 2 Explanation: Only two moves are needed (remember each move increments or decrements one element): [1,2,3] => [2,2,3] => [2,2,2] 解析:最小的移动次数,如果数组是排好序的,则第一个和最后一个数要变成的相同的数则需要移动nums[n]-nums[0]次依次类推,快排的话时间复杂度为O(nlogn);另一种解法则是求出中位数,计算每个元素到中位数移动的次数,求中位数使用Partition的思想,中位数前面的元素都比中位数小,后面的比中位数大,但不是必须
排序的,求中位数的时间复杂度为O(n),遍历求移动次数的时间复杂度也为O(n),所以整体的时间复杂度为O(n),下面给出两种解法代码
代码:
class Solution { public: int minMoves2(vector<int>& nums) { int ans=0; auto it=nums.begin()+nums.size()/2; nth_element(nums.begin(),it,nums.end()); int mid=*it; for (int i=0; i<nums.size(); i++) { ans+=abs(nums[i]-mid); } return ans; /* int ans=0; sort(nums.begin(),nums.end()); int i=0; int j=nums.size()-1; while(i<j) { ans+=(nums[j]-nums[i]); i++; j--; } return ans;*/ } };