思路一:给定a,b两个数,将较小的数赋值给c,令c=b(不妨设a>b),将a和b对c做求余运算,从c开始依次减1向下遍历,直到两者的余数都为0则返回c,否则继续循环遍历。
代码如下:
#include<iostream.h> int gcd(int a,int b) { int c; c=(a>b)?b:a; while(a%c!=0||b%c!=0) { c--; } return c; } int main() { int a,b,max_div; cout<<"please input two integer:"; cin>>a>>b; max_div=gcd(a,b); cout<<"the greatest common divisor of "; cout<<a<<" and "<<b<<" is "<<max_div<<endl; return 0; }思路二:辗转相除法
假设a>b,如果a不能被b整除,则将b赋值给a,余数赋值给b,重复执行a%b,直到a能够被b整除。此时返回b的值,则为最大公约数。
代码如下:
#include<iostream.h> int gcd2(int a,int b) { int c; if(a<b) { a=a+b; b=a-b; a=a-b; } c=a%b; while(a%b!=0) { a=b; b=c; c=a%b; } return b; } int main() { int a,b,max_div; cout<<"please input two integer:"; cin>>a>>b; max_div=gcd2(a,b); cout<<"the greatest common divisor of "; cout<<a<<" and "<<b<<" is "<<max_div<<endl; return 0; }很显然:方法2比方法1更加高效,优先推荐使用方法2
参考文献:http://blog.csdn.net/a1414345/article/details/51770430