Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up: Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
求一个数组除去每一个位置以后的乘积。不能用除法,O(n)时间复杂度,O(1)空间复杂度。
两个量分别统计前缀数组乘积和后缀数组乘积,每一个位置的值为前缀和后缀的乘积相乘。
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
vector<int> res(nums.size(), 1);
int s = 1, e = 1;
int n = nums.size();
for(int i = 0; i < nums.size(); i++)
{
res[i] *= s;
s *= nums[i];
res[n - 1 - i] *= e;
e *= nums[n - 1 - i];
}
return res;
}
};
转载请注明原文地址: https://ju.6miu.com/read-669009.html