CodeForces - 233B 数学

    xiaoxiao2021-04-14  42

    Let's consider equation:

    x2 + s(x)·x - n = 0, 

    where x, n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.

    You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.

    Input

    A single line contains integer n (1 ≤ n ≤ 1018) — the equation parameter.

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.

    Output

    Print -1, if the equation doesn't have integer positive roots. Otherwise print such smallest integer x (x > 0), that the equation given in the statement holds.

    Example Input 2 Output 1 Input 110 Output 10 Input 4 Output -1 Note

    In the first test case x = 1 is the minimum root. As s(1) = 1 and 12 + 1·1 - 2 = 0.

    In the second test case x = 10 is the minimum root. As s(10) = 1 + 0 = 1 and 102 + 1·10 - 110 = 0.

    In the third test case the equation has no roots.

    题意: x2 + s(xx - n = 0, 输入n,求x,s(x)表示各位数之和;

    思路:公式法求x,但必须保证中间所有的数都是整数,最后求出x,再用x检验s(x)是否正确即可;

    #include<cstdio> #include<cstring> #include<queue> #include<stack> #include<vector> #include<cmath> #include<algorithm> #define INF 0x3f3f3f3f using namespace std; typedef long long LL; bool fun(LL x,LL i) { LL sum=0; while(x) { sum=sum+x; x/=10; } if(sum==i) return true; else return false; } int main() { LL n,ans,t,m; scanf("%lld",&n); bool flag=false; for(LL i=1;i<=170;i++) { ans=i*i+4*n; m=LL(ceil(sqrt(ans))); if(m*m==ans) { m=m-i; if(m%2==0) { t=m/2; if(fun(t,i)) { printf("%lld\n",t); flag=true; break; } } } } if(!flag) printf("-1\n"); return 0; }

    转载请注明原文地址: https://ju.6miu.com/read-669641.html

    最新回复(0)