Algorithm Gossip (7) 骑士走棋盘(Knight tour)

    xiaoxiao2021-04-14  34

    前言

    This Series aritcles are all based on the book 《经典算法大全》; 对于该书的所有案例进行一个探究和拓展,并且用python和C++进行实现; 目的是熟悉常用算法过程中的技巧和逻辑拓展。

    提出问题

    Algorithm Gossip: 骑士走棋盘(Knight tour)

    骑士的走法为西洋棋的走法, 骑士可以由任一个位置出发,它要如何走完所有的位置?

    分析和解释

    骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

    代码

    #include <stdio.h> int board[8][8] = {0}; int travel(int x, int y); int main(void) { int startx, starty; int i, j; printf("imput the start point"); scanf("%d %d", &startx,&starty); if(travel(startx, starty)) { printf("Seccessed!\n"); } else { printf("Failed\n"); } for(i = 0; i < 8; i++) { for(j = 0; j < 8; j++) { printf("- ", board[i][j]); } putchar('\n'); } return 0; } int travel(int x, int y) { // 对应骑士可走的八个方向 int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2}; int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1}; // 测试下一步的出路 int nexti[8] = {0}; int nextj[8] = {0}; // 记录出路的个数 int exists[8] = {0}; int i, j, k, m, l; int tmpi, tmpj; int count,min, tmp; i = x; j = y; board[i][j] = 1; for(m = 2; m <= 64; m++) { for(l = 0; l < 8; l++) exists[l] = 0; l = 0; // 试探八个方向 for(k = 0; k < 8; k++) { tmpi = i + ktmove1[k]; tmpj = j + ktmove2[k];// 如果是边界了,不可走 if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) continue; // 如果这个方向可走,记录下来 if(board[tmpi][tmpj] == 0) { nexti[l] = tmpi; nextj[l] = tmpj; l++; // 可走的方向加一个 } } count = l; // 如果可走的方向为0个,返回 if(count == 0) { return 0; } else if(count == 1) {// 只有一个可走的方向, 所以直接是最少出路的方向 min = 0; } else { // 找出下一个位置的出路数 for(l = 0; l < count; l++) { for(k = 0; k < 8; k++) { tmpi = nexti[l] + ktmove1[k]; tmpj = nextj[l] + ktmove2[k]; if(tmpi < 0 || tmpj < 0 ||tmpi > 7 || tmpj > 7) { continue; } if(board[tmpi][tmpj] == 0) exists[l]++; } } tmp = exists[0]; min = 0; // 从可走的方向中寻找最少出路的方向 for(l = 1; l < count; l++) { if(exists[l] < tmp) { tmp = exists[l]; min = l; } } } // 走最少出路的方向 i = nexti[min]; j = nextj[min]; board[i][j] = m; } return 1; }

    拓展和关联

    后记

    参考书籍

    《经典算法大全》维基百科
    转载请注明原文地址: https://ju.6miu.com/read-669876.html

    最新回复(0)