Building powerful image classification models using very little data 结果暂存

    xiaoxiao2021-04-14  41

    https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

    1. 在小数据集上训练神经网络:40行代码达到80%的准确率

    /usr/bin/python2.7 "/home/vickyleexy/keras/image classification models using little data/classifier_from_little_data_script_1.py" Using TensorFlow backend. Found 2000 images belonging to 2 classes. Found 800 images belonging to 2 classes. Epoch 1/50 2017-04-13 17:53:08.838264: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-13 17:53:08.838309: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-13 17:53:08.838322: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 125/125 [==============================] - 188s - loss: 0.7686 - acc: 0.5360 - val_loss: 0.8013 - val_acc: 0.5000 Epoch 2/50 125/125 [==============================] - 184s - loss: 0.6855 - acc: 0.5780 - val_loss: 0.6268 - val_acc: 0.6825 Epoch 3/50 125/125 [==============================] - 184s - loss: 0.6469 - acc: 0.6450 - val_loss: 0.5994 - val_acc: 0.6062 Epoch 4/50 125/125 [==============================] - 184s - loss: 0.6209 - acc: 0.6710 - val_loss: 0.5678 - val_acc: 0.6937 Epoch 5/50 125/125 [==============================] - 184s - loss: 0.5925 - acc: 0.6930 - val_loss: 0.5044 - val_acc: 0.7650 Epoch 6/50 125/125 [==============================] - 184s - loss: 0.5729 - acc: 0.7145 - val_loss: 0.4939 - val_acc: 0.7738 Epoch 7/50 125/125 [==============================] - 184s - loss: 0.5537 - acc: 0.7295 - val_loss: 0.5289 - val_acc: 0.7350 Epoch 8/50 125/125 [==============================] - 183s - loss: 0.5565 - acc: 0.7260 - val_loss: 0.4755 - val_acc: 0.7788 Epoch 9/50 125/125 [==============================] - 185s - loss: 0.5426 - acc: 0.7470 - val_loss: 0.4998 - val_acc: 0.7612 Epoch 10/50 125/125 [==============================] - 183s - loss: 0.5164 - acc: 0.7495 - val_loss: 0.5502 - val_acc: 0.7163 Epoch 11/50 125/125 [==============================] - 184s - loss: 0.5063 - acc: 0.7680 - val_loss: 0.4713 - val_acc: 0.7800 Epoch 12/50 125/125 [==============================] - 181s - loss: 0.4986 - acc: 0.7705 - val_loss: 0.5489 - val_acc: 0.7338 Epoch 13/50 125/125 [==============================] - 179s - loss: 0.4748 - acc: 0.7755 - val_loss: 0.5087 - val_acc: 0.7412 Epoch 14/50 125/125 [==============================] - 179s - loss: 0.4942 - acc: 0.7735 - val_loss: 0.4680 - val_acc: 0.7788 Epoch 15/50 125/125 [==============================] - 131s - loss: 0.4848 - acc: 0.7795 - val_loss: 0.4485 - val_acc: 0.7950 Epoch 16/50 125/125 [==============================] - 105s - loss: 0.4630 - acc: 0.7870 - val_loss: 0.4478 - val_acc: 0.8113 Epoch 17/50 125/125 [==============================] - 105s - loss: 0.4666 - acc: 0.7965 - val_loss: 0.5163 - val_acc: 0.7400 Epoch 18/50 125/125 [==============================] - 105s - loss: 0.4662 - acc: 0.7825 - val_loss: 0.4536 - val_acc: 0.8013 Epoch 19/50 125/125 [==============================] - 105s - loss: 0.4459 - acc: 0.8070 - val_loss: 0.5453 - val_acc: 0.7712 Epoch 20/50 125/125 [==============================] - 105s - loss: 0.4493 - acc: 0.7985 - val_loss: 0.4779 - val_acc: 0.7788 Epoch 21/50 125/125 [==============================] - 105s - loss: 0.4577 - acc: 0.7965 - val_loss: 0.5021 - val_acc: 0.7937 Epoch 22/50 125/125 [==============================] - 105s - loss: 0.4499 - acc: 0.8010 - val_loss: 0.4421 - val_acc: 0.8250 Epoch 23/50 125/125 [==============================] - 105s - loss: 0.4401 - acc: 0.8115 - val_loss: 0.5273 - val_acc: 0.7963 Epoch 24/50 125/125 [==============================] - 112s - loss: 0.4250 - acc: 0.8135 - val_loss: 0.4785 - val_acc: 0.7900 Epoch 25/50 125/125 [==============================] - 112s - loss: 0.4113 - acc: 0.8125 - val_loss: 0.4585 - val_acc: 0.8187 Epoch 26/50 125/125 [==============================] - 106s - loss: 0.4268 - acc: 0.8105 - val_loss: 0.4773 - val_acc: 0.8063 Epoch 27/50 125/125 [==============================] - 103s - loss: 0.4249 - acc: 0.8085 - val_loss: 0.4448 - val_acc: 0.8350 Epoch 28/50 125/125 [==============================] - 103s - loss: 0.4267 - acc: 0.8055 - val_loss: 0.7409 - val_acc: 0.7063 Epoch 29/50 125/125 [==============================] - 109s - loss: 0.3955 - acc: 0.8325 - val_loss: 0.4703 - val_acc: 0.7975 Epoch 30/50 125/125 [==============================] - 109s - loss: 0.4086 - acc: 0.8210 - val_loss: 0.5015 - val_acc: 0.8200 Epoch 31/50 125/125 [==============================] - 105s - loss: 0.4150 - acc: 0.8250 - val_loss: 0.4813 - val_acc: 0.7987 Epoch 32/50 125/125 [==============================] - 116s - loss: 0.4277 - acc: 0.8085 - val_loss: 0.5484 - val_acc: 0.7488 Epoch 33/50 125/125 [==============================] - 104s - loss: 0.4184 - acc: 0.8225 - val_loss: 0.4896 - val_acc: 0.7950 Epoch 34/50 125/125 [==============================] - 104s - loss: 0.4206 - acc: 0.8260 - val_loss: 0.4914 - val_acc: 0.8025 Epoch 35/50 125/125 [==============================] - 104s - loss: 0.4236 - acc: 0.8205 - val_loss: 0.5932 - val_acc: 0.7825 Epoch 36/50 125/125 [==============================] - 104s - loss: 0.4139 - acc: 0.8320 - val_loss: 0.4592 - val_acc: 0.8200 Epoch 37/50 125/125 [==============================] - 104s - loss: 0.3872 - acc: 0.8350 - val_loss: 0.4539 - val_acc: 0.8150 Epoch 38/50 125/125 [==============================] - 104s - loss: 0.3798 - acc: 0.8420 - val_loss: 0.4844 - val_acc: 0.8200 Epoch 39/50 125/125 [==============================] - 104s - loss: 0.4203 - acc: 0.8330 - val_loss: 0.5019 - val_acc: 0.7937 Epoch 40/50 125/125 [==============================] - 104s - loss: 0.4072 - acc: 0.8255 - val_loss: 0.5300 - val_acc: 0.7887 Epoch 41/50 125/125 [==============================] - 104s - loss: 0.4017 - acc: 0.8255 - val_loss: 0.4658 - val_acc: 0.8100 Epoch 42/50 125/125 [==============================] - 104s - loss: 0.3894 - acc: 0.8340 - val_loss: 0.7020 - val_acc: 0.7512 Epoch 43/50 125/125 [==============================] - 109s - loss: 0.3915 - acc: 0.8415 - val_loss: 0.4835 - val_acc: 0.8063 Epoch 44/50 125/125 [==============================] - 112s - loss: 0.4098 - acc: 0.8250 - val_loss: 0.4822 - val_acc: 0.8075 Epoch 45/50 125/125 [==============================] - 108s - loss: 0.3835 - acc: 0.8430 - val_loss: 0.5384 - val_acc: 0.8063 Epoch 46/50 125/125 [==============================] - 110s - loss: 0.4102 - acc: 0.8310 - val_loss: 0.4724 - val_acc: 0.7850 Epoch 47/50 125/125 [==============================] - 113s - loss: 0.3926 - acc: 0.8440 - val_loss: 0.5055 - val_acc: 0.8063 Epoch 48/50 125/125 [==============================] - 109s - loss: 0.3918 - acc: 0.8340 - val_loss: 0.6078 - val_acc: 0.7675 Epoch 49/50 125/125 [==============================] - 109s - loss: 0.3808 - acc: 0.8420 - val_loss: 0.4490 - val_acc: 0.8137 Epoch 50/50 125/125 [==============================] - 104s - loss: 0.4033 - acc: 0.8320 - val_loss: 0.5457 - val_acc: 0.8213 Process finished with exit code 0

    2.使用预训练网络的bottleneck特征:一分钟达到90%的正确率

    /usr/bin/python2.7 "/home/vickyleexy/keras/image classification models using little data/classifier_from_little_data_script_2.py" Using TensorFlow backend. 2017-04-13 20:01:28.444837: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-13 20:01:28.444871: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-13 20:01:28.444879: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. Found 2000 images belonging to 2 classes. Found 800 images belonging to 2 classes. Train on 2000 samples, validate on 800 samples Epoch 1/50 2000/2000 [==============================] - 5s - loss: 0.7468 - acc: 0.7645 - val_loss: 0.3196 - val_acc: 0.8462 Epoch 2/50 2000/2000 [==============================] - 5s - loss: 0.4271 - acc: 0.8300 - val_loss: 0.2687 - val_acc: 0.8900 Epoch 3/50 2000/2000 [==============================] - 5s - loss: 0.3352 - acc: 0.8750 - val_loss: 0.3109 - val_acc: 0.8888 Epoch 4/50 2000/2000 [==============================] - 5s - loss: 0.2989 - acc: 0.8875 - val_loss: 0.3212 - val_acc: 0.8800 Epoch 5/50 2000/2000 [==============================] - 5s - loss: 0.2424 - acc: 0.9010 - val_loss: 0.4034 - val_acc: 0.8600 Epoch 6/50 2000/2000 [==============================] - 5s - loss: 0.2400 - acc: 0.9115 - val_loss: 0.3544 - val_acc: 0.8750 Epoch 7/50 2000/2000 [==============================] - 5s - loss: 0.2006 - acc: 0.9255 - val_loss: 0.3102 - val_acc: 0.8962 Epoch 8/50 2000/2000 [==============================] - 5s - loss: 0.1786 - acc: 0.9310 - val_loss: 0.4162 - val_acc: 0.8838 Epoch 9/50 2000/2000 [==============================] - 5s - loss: 0.1574 - acc: 0.9410 - val_loss: 0.4382 - val_acc: 0.8912 Epoch 10/50 2000/2000 [==============================] - 5s - loss: 0.1662 - acc: 0.9460 - val_loss: 0.4042 - val_acc: 0.8862 Epoch 11/50 2000/2000 [==============================] - 5s - loss: 0.1322 - acc: 0.9495 - val_loss: 0.4317 - val_acc: 0.8938 Epoch 12/50 2000/2000 [==============================] - 6s - loss: 0.1043 - acc: 0.9625 - val_loss: 0.4873 - val_acc: 0.8900 Epoch 13/50 2000/2000 [==============================] - 7s - loss: 0.1080 - acc: 0.9630 - val_loss: 0.5025 - val_acc: 0.8938 Epoch 14/50 2000/2000 [==============================] - 5s - loss: 0.0993 - acc: 0.9690 - val_loss: 0.6389 - val_acc: 0.8775 Epoch 15/50 2000/2000 [==============================] - 5s - loss: 0.0819 - acc: 0.9705 - val_loss: 0.6256 - val_acc: 0.8975 Epoch 16/50 2000/2000 [==============================] - 5s - loss: 0.0821 - acc: 0.9695 - val_loss: 0.6024 - val_acc: 0.8838 Epoch 17/50 2000/2000 [==============================] - 5s - loss: 0.0652 - acc: 0.9805 - val_loss: 0.8193 - val_acc: 0.8725 Epoch 18/50 2000/2000 [==============================] - 5s - loss: 0.0685 - acc: 0.9765 - val_loss: 0.6938 - val_acc: 0.8762 Epoch 19/50 2000/2000 [==============================] - 5s - loss: 0.0512 - acc: 0.9825 - val_loss: 0.6736 - val_acc: 0.8888 Epoch 20/50 2000/2000 [==============================] - 5s - loss: 0.0468 - acc: 0.9825 - val_loss: 0.8682 - val_acc: 0.8625 Epoch 21/50 2000/2000 [==============================] - 5s - loss: 0.0556 - acc: 0.9830 - val_loss: 0.8739 - val_acc: 0.8725 Epoch 22/50 2000/2000 [==============================] - 5s - loss: 0.0311 - acc: 0.9895 - val_loss: 0.7556 - val_acc: 0.8888 Epoch 23/50 2000/2000 [==============================] - 5s - loss: 0.0353 - acc: 0.9880 - val_loss: 0.7451 - val_acc: 0.8962 Epoch 24/50 2000/2000 [==============================] - 5s - loss: 0.0384 - acc: 0.9885 - val_loss: 0.7958 - val_acc: 0.8725 Epoch 25/50 2000/2000 [==============================] - 5s - loss: 0.0407 - acc: 0.9905 - val_loss: 0.7584 - val_acc: 0.8888 Epoch 26/50 2000/2000 [==============================] - 5s - loss: 0.0286 - acc: 0.9915 - val_loss: 0.8506 - val_acc: 0.8938 Epoch 27/50 2000/2000 [==============================] - 5s - loss: 0.0389 - acc: 0.9875 - val_loss: 0.8518 - val_acc: 0.8825 Epoch 28/50 2000/2000 [==============================] - 5s - loss: 0.0173 - acc: 0.9935 - val_loss: 0.9391 - val_acc: 0.8862 Epoch 29/50 2000/2000 [==============================] - 5s - loss: 0.0448 - acc: 0.9875 - val_loss: 0.9252 - val_acc: 0.8725 Epoch 30/50 2000/2000 [==============================] - 5s - loss: 0.0292 - acc: 0.9920 - val_loss: 0.8644 - val_acc: 0.8912 Epoch 31/50 2000/2000 [==============================] - 5s - loss: 0.0197 - acc: 0.9905 - val_loss: 0.8346 - val_acc: 0.8838 Epoch 32/50 2000/2000 [==============================] - 5s - loss: 0.0250 - acc: 0.9930 - val_loss: 0.8354 - val_acc: 0.8900 Epoch 33/50 2000/2000 [==============================] - 5s - loss: 0.0275 - acc: 0.9910 - val_loss: 0.9280 - val_acc: 0.8762 Epoch 34/50 2000/2000 [==============================] - 5s - loss: 0.0233 - acc: 0.9940 - val_loss: 0.9231 - val_acc: 0.8938 Epoch 35/50 2000/2000 [==============================] - 5s - loss: 0.0191 - acc: 0.9935 - val_loss: 0.9371 - val_acc: 0.8888 Epoch 36/50 2000/2000 [==============================] - 5s - loss: 0.0160 - acc: 0.9950 - val_loss: 1.0164 - val_acc: 0.8688 Epoch 37/50 2000/2000 [==============================] - 5s - loss: 0.0129 - acc: 0.9950 - val_loss: 0.9943 - val_acc: 0.8812 Epoch 38/50 2000/2000 [==============================] - 5s - loss: 0.0153 - acc: 0.9945 - val_loss: 0.9951 - val_acc: 0.8762 Epoch 39/50 2000/2000 [==============================] - 5s - loss: 0.0206 - acc: 0.9905 - val_loss: 1.0088 - val_acc: 0.8938 Epoch 40/50 2000/2000 [==============================] - 5s - loss: 0.0123 - acc: 0.9955 - val_loss: 1.0122 - val_acc: 0.8862 Epoch 41/50 2000/2000 [==============================] - 5s - loss: 0.0174 - acc: 0.9955 - val_loss: 0.9950 - val_acc: 0.8900 Epoch 42/50 2000/2000 [==============================] - 5s - loss: 0.0251 - acc: 0.9945 - val_loss: 1.0275 - val_acc: 0.8850 Epoch 43/50 2000/2000 [==============================] - 5s - loss: 0.0193 - acc: 0.9950 - val_loss: 0.9883 - val_acc: 0.8825 Epoch 44/50 2000/2000 [==============================] - 5s - loss: 0.0082 - acc: 0.9965 - val_loss: 1.0449 - val_acc: 0.8862 Epoch 45/50 2000/2000 [==============================] - 5s - loss: 0.0191 - acc: 0.9950 - val_loss: 1.0368 - val_acc: 0.8900 Epoch 46/50 2000/2000 [==============================] - 5s - loss: 0.0200 - acc: 0.9950 - val_loss: 1.0392 - val_acc: 0.8888 Epoch 47/50 2000/2000 [==============================] - 5s - loss: 0.0098 - acc: 0.9965 - val_loss: 1.0480 - val_acc: 0.8850 Epoch 48/50 2000/2000 [==============================] - 5s - loss: 0.0170 - acc: 0.9955 - val_loss: 1.0748 - val_acc: 0.8925 Epoch 49/50 2000/2000 [==============================] - 5s - loss: 0.0118 - acc: 0.9970 - val_loss: 1.0363 - val_acc: 0.8862 Epoch 50/50 2000/2000 [==============================] - 5s - loss: 0.0080 - acc: 0.9980 - val_loss: 1.0833 - val_acc: 0.8912 Process finished with exit code 0

    3. 在预训练的网络上fine-tune

    转载请注明原文地址: https://ju.6miu.com/read-669900.html

    最新回复(0)