CS重构之CoSaMP

    xiaoxiao2021-04-14  52

    压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法。CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了原子的选择标准之外,它有一点不同于ROMP: ROMP每次迭代已经选择的原子会一直保留,而CoSaMP每次迭代选择的原子在下次迭代中可能会被抛弃 在这之前先读了下参考论文[1],论文前面还是看得懂一点的,讲了一些压缩感知的基础知识,还聊到了压缩重构方法主要分为三类,但是到了第2部分介绍算法的时候又看不懂了,感觉符号都还没聊清楚就开始讲流程了。佩服看得懂的博主,还说很容易就看懂了。。。希望自己好好努力也能看懂这些外文文献,fighting啦! 那么我先把论文中的流程贴出来,并没有对符号作过多的解释。。。 然后在网上找到了符合论文中符号的代码。 functionSest=cosaomp(Phi,u,K,tol,maxiterations) Sest = zeros(size(Phi,2),1); v = u; t = 1; numericalprecision=1e-12; T = []; while(t<=maxiterations)&&(norm(v)/norm(u)>tol) y = abs(Phi'*v); [vals,z]=sort(y,'descend'); Omega = find(y>=vals(2*K)&y>numericalprecision); T = union(Omega,T); b = pinv(Phi(:,T))*u; [vals,z]=sort(abs(b),'descend'); Kgoodindices = (abs(b)>=vals(K)&abs(b)>numericalprecision); T = T(Kgoodindices); Sest = zeros(size(Phi,2),1); phit = Phi(:,T); b = pinv(phit)*u; Sest(T)=b; v = u - phit*b; t = t+1; end 接下来综合代码我准备强行解释一波论文算法的伪代码流程,哎呀半懂半懂希望以后要全懂全懂。 1.Identification(识别) 大意是说要构造一个signal proxy,在伪代码中构造signal proxy是y=Phi*v,下图是从论文中摘出来的,突然明白了这段话的意思,首先翻译一下。信号重构的最大难点在于找到目标信号中这些最大项所在的位置。CoSaOMP受到RIP的启发,假设字典矩阵的RIP常数为远远小于1的一个值,对s稀疏的信号x,y=Phi*Phi x可以作为信号的一个代理。因为y的每一个s向量的结合的能量与信号x中s个向量的能量相对应。(我觉得这里的Phi应该是理解为字典矩阵的,因为计算内积的时候我们是选择将字典矩阵与残差相乘,残差初始化为观测向量也就是Phi*x)。这一步对应着代码的第8行。 接着是伪代码中所说的Identify large components,也就是找到内积值中最大的2K项,复制给Ω,对应上述代码的第10行。 2.Support Merger(合并支撑集) 代码第11行。 3.Estimation 这里是求解一个最小二乘问题,pinv是求伪逆矩阵。 “b|Tc←0”中的“Tc”应该是T的补集(complementary set),向量b的元素序号为全集,子集T对应的元素等于最小二乘解,补集对应的元素为零。 4.Pruning(修剪) 代码第13行,选出b中K个最大项。 5.Sample Update(更新)
    强行解释结束了,接下来贴出博主的解释。 1、CoSaMP重构算法流程: 步骤(5)稍微有点绕,综合代码理解一下还是不难的。 2、压缩采样匹配追踪(CoSaOMP)Matlab代码(CS_CoSaMP.m) function[theta]=CS_CoSaMP(y,A,K) %CS_CoSaOMP Summary of this function goes here %Created by jbb0523@@2015-04-29 %Version: 1.1 modified by jbb0523 @2015-05-09 % Detailed explanation goes here % y = Phi * x % x = Psi * theta % y = Phi*Psi * theta % 令 A = Phi*Psi, 则y=A*theta % K is the sparsity level % 现在已知y和A,求theta % Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from % incomplete and inaccurate samples[J].Applied and Computation Harmonic % Analysis,2009,26:301-321. [y_rows,y_columns]=size(y); if y_rows<y_columns y = y';%y should be a column vector end [M,N]=size(A);%传感矩阵A为M*N矩阵 theta = zeros(N,1);%用来存储恢复的theta(列向量) Pos_theta = [];%用来迭代过程中存储A被选择的列序号 r_n = y;%初始化残差(residual)为y for kk=1:K%最多迭代K次 %(1) Identification product = A'*r_n;%传感矩阵A各列与残差的内积 [val,pos]=sort(abs(product),'descend'); Js = pos(1:2*K);%选出内积值最大的2K列 %(2) Support Merger Is = union(Pos_theta,Js);%Pos_theta与Js并集 %(3) Estimation %At的行数要大于列数,此为最小二乘的基础(列线性无关) if length(Is)<=M At = A(:,Is);%将A的这几列组成矩阵At else%At的列数大于行数,列必为线性相关的,At'*At将不可逆 if kk == 1 theta_ls=0; end break;%跳出for循环 end %y=At*theta,以下求theta的最小二乘解(Least Square) theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解 %(4) Pruning [val,pos]=sort(abs(theta_ls),'descend'); %(5) Sample Update Pos_theta = Is(pos(1:K)); theta_ls = theta_ls(pos(1:K)); %At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影 r_n = y - At(:,pos(1:K))*theta_ls;%更新残差 if norm(r_n)<1e-6%Repeat the steps until r=0 break;%跳出for循环 end end theta(Pos_theta)=theta_ls;%恢复出的theta end 3、CoSaMP单次重构 测试 代码 以下测试代码基本与OMP单次重构测试代码一样。 %压缩感知重构算法测试 clear all;close all;clc; M = 64;%观测值个数 N = 256;%信号x的长度 K = 12;%信号x的稀疏度 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K))=5*randn(K,1);%x为K稀疏的,且位置是随机的 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta Phi = randn(M,N);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y %% 恢复重构信号x tic theta = CS_CoSaMP(y,A,K); x_r = Psi * theta;% x=Psi * theta toc %% 绘图 figure; plot(x_r,'k.-');%绘出x的恢复信号 hold on; plot(x,'r');%绘出原信号x hold off; legend('Recovery','Original') fprintf('\n恢复残差:'); norm(x_r-x)%恢复残差 运行结果如下:(信号为随机生成,所以每次结果均不一样)  1)图:         2)Command  windows         Elapsedtime is 0.073375 seconds.         恢复残差:         ans=           7.3248e-015 4、测量数M与重构成功概率关系曲线绘制例程代码 以下测试代码基本与OMP测量数M与重构成功概率关系曲线绘制代码一样。增加了“fprintf('K=%d,M=%d\n',K,M);”,可以观察程序运行进度。 clear all;close all;clc; %% 参数配置初始化 CNT = 1000;%对于每组(K,M,N),重复迭代次数 N = 256;%信号x的长度 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta K_set = [4,12,20,28,36];%信号x的稀疏度集合 Percentage = zeros(length(K_set),N);%存储恢复成功概率 %% 主循环,遍历每组(K,M,N) tic forkk=1:length(K_set) K = K_set(kk);%本次稀疏度 M_set = 2*K:5:N;%M没必要全部遍历,每隔5测试一个就可以了 PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率 for mm = 1:length(M_set) M = M_set(mm);%本次观测值个数 fprintf('K=%d,M=%d\n',K,M); P = 0; for cnt = 1:CNT%每个观测值个数均运行CNT次 Index_K=randperm(N); x = zeros(N,1); x(Index_K(1:K))=5*randn(K,1);%x为K稀疏的,且位置是随机的 Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y theta = CS_CoSaMP(y,A,K);%恢复重构信号theta x_r = Psi * theta;% x=Psi * theta if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功 P = P + 1; end end PercentageK(mm)=P/CNT*100;%计算恢复概率 end Percentage(kk,1:length(M_set))=PercentageK; end toc save CoSaMPMtoPercentage1000%运行一次不容易,把变量全部存储下来 %% 绘图 S = ['-ks';'-ko';'-kd';'-kv';'-k*']; figure; forkk=1:length(K_set) K = K_set(kk); M_set = 2*K:5:N; L_Mset = length(M_set); plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号 hold on; end 本程序运行结果: 参考文献: [1]D. Needell, J.A. Tropp.CoSaMP: Iterative signal recoveryfrom incomplete and inaccurate samples.http://arxiv.org/pdf/0803.2392v2.pdf [2]D.Needell, J.A. Tropp.CoSaMP: Iterative signal recoveryfrom incomplete and inaccurate samples[J]. Communications of theACM,2010,53(12):93-100. (http://dl.acm.org/citation.cfm?id=1859229) [3]  彬彬有礼 . 压缩感知重构算法之压缩采样匹配追踪(CoSaMP) . http://blog.csdn.net/jbb0523/article/details/45441361
    转载请注明原文地址: https://ju.6miu.com/read-669927.html

    最新回复(0)