压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法。CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了原子的选择标准之外,它有一点不同于ROMP:
ROMP每次迭代已经选择的原子会一直保留,而CoSaMP每次迭代选择的原子在下次迭代中可能会被抛弃
。
在这之前先读了下参考论文[1],论文前面还是看得懂一点的,讲了一些压缩感知的基础知识,还聊到了压缩重构方法主要分为三类,但是到了第2部分介绍算法的时候又看不懂了,感觉符号都还没聊清楚就开始讲流程了。佩服看得懂的博主,还说很容易就看懂了。。。希望自己好好努力也能看懂这些外文文献,fighting啦!
那么我先把论文中的流程贴出来,并没有对符号作过多的解释。。。
然后在网上找到了符合论文中符号的代码。
functionSest=cosaomp(Phi,u,K,tol,maxiterations)
Sest = zeros(size(Phi,2),1);
v = u;
t = 1;
numericalprecision=1e-12;
T = [];
while(t<=maxiterations)&&(norm(v)/norm(u)>tol)
y = abs(Phi'*v);
[vals,z]=sort(y,'descend');
Omega = find(y>=vals(2*K)&y>numericalprecision);
T = union(Omega,T);
b = pinv(Phi(:,T))*u;
[vals,z]=sort(abs(b),'descend');
Kgoodindices = (abs(b)>=vals(K)&abs(b)>numericalprecision);
T = T(Kgoodindices);
Sest = zeros(size(Phi,2),1);
phit = Phi(:,T);
b = pinv(phit)*u;
Sest(T)=b;
v = u - phit*b;
t = t+1;
end
接下来综合代码我准备强行解释一波论文算法的伪代码流程,哎呀半懂半懂希望以后要全懂全懂。
1.Identification(识别)
大意是说要构造一个signal proxy,在伪代码中构造signal proxy是y=Phi*v,下图是从论文中摘出来的,突然明白了这段话的意思,首先翻译一下。信号重构的最大难点在于找到目标信号中这些最大项所在的位置。CoSaOMP受到RIP的启发,假设字典矩阵的RIP常数为远远小于1的一个值,对s稀疏的信号x,y=Phi*Phi x可以作为信号的一个代理。因为y的每一个s向量的结合的能量与信号x中s个向量的能量相对应。(我觉得这里的Phi应该是理解为字典矩阵的,因为计算内积的时候我们是选择将字典矩阵与残差相乘,残差初始化为观测向量也就是Phi*x)。这一步对应着代码的第8行。
接着是伪代码中所说的Identify large components,也就是找到内积值中最大的2K项,复制给Ω,对应上述代码的第10行。
2.Support Merger(合并支撑集)
代码第11行。
3.Estimation
这里是求解一个最小二乘问题,pinv是求伪逆矩阵。
“b|Tc←0”中的“Tc”应该是T的补集(complementary set),向量b的元素序号为全集,子集T对应的元素等于最小二乘解,补集对应的元素为零。
4.Pruning(修剪)
代码第13行,选出b中K个最大项。
5.Sample Update(更新)
强行解释结束了,接下来贴出博主的解释。
1、CoSaMP重构算法流程:
步骤(5)稍微有点绕,综合代码理解一下还是不难的。
2、压缩采样匹配追踪(CoSaOMP)Matlab代码(CS_CoSaMP.m)
function[theta]=CS_CoSaMP(y,A,K)
%CS_CoSaOMP Summary of this function goes here
%Created by jbb0523@@2015-04-29
%Version: 1.1 modified by jbb0523 @2015-05-09
% Detailed explanation goes here
% y = Phi * x
% x = Psi * theta
% y = Phi*Psi * theta
% 令 A = Phi*Psi, 则y=A*theta
% K is the sparsity level
% 现在已知y和A,求theta
% Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from
% incomplete and inaccurate samples[J].Applied and Computation Harmonic
% Analysis,2009,26:301-321.
[y_rows,y_columns]=size(y);
if y_rows<y_columns
y = y';%y should be a column vector
end
[M,N]=size(A);%传感矩阵A为M*N矩阵
theta = zeros(N,1);%用来存储恢复的theta(列向量)
Pos_theta = [];%用来迭代过程中存储A被选择的列序号
r_n = y;%初始化残差(residual)为y
for kk=1:K%最多迭代K次
%(1) Identification
product = A'*r_n;%传感矩阵A各列与残差的内积
[val,pos]=sort(abs(product),'descend');
Js = pos(1:2*K);%选出内积值最大的2K列
%(2) Support Merger
Is = union(Pos_theta,Js);%Pos_theta与Js并集
%(3) Estimation
%At的行数要大于列数,此为最小二乘的基础(列线性无关)
if length(Is)<=M
At = A(:,Is);%将A的这几列组成矩阵At
else%At的列数大于行数,列必为线性相关的,At'*At将不可逆
if kk == 1
theta_ls=0;
end
break;%跳出for循环
end
%y=At*theta,以下求theta的最小二乘解(Least Square)
theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解
%(4) Pruning
[val,pos]=sort(abs(theta_ls),'descend');
%(5) Sample Update
Pos_theta = Is(pos(1:K));
theta_ls = theta_ls(pos(1:K));
%At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影
r_n = y - At(:,pos(1:K))*theta_ls;%更新残差
if norm(r_n)<1e-6%Repeat the steps until r=0
break;%跳出for循环
end
end
theta(Pos_theta)=theta_ls;%恢复出的theta
end
3、CoSaMP单次重构
测试
代码
以下测试代码基本与OMP单次重构测试代码一样。
%压缩感知重构算法测试
clear all;close all;clc;
M = 64;%观测值个数
N = 256;%信号x的长度
K = 12;%信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K))=5*randn(K,1);%x为K稀疏的,且位置是随机的
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
%% 恢复重构信号x
tic
theta = CS_CoSaMP(y,A,K);
x_r = Psi * theta;% x=Psi * theta
toc
%% 绘图
figure;
plot(x_r,'k.-');%绘出x的恢复信号
hold on;
plot(x,'r');%绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('\n恢复残差:');
norm(x_r-x)%恢复残差
运行结果如下:(信号为随机生成,所以每次结果均不一样)
1)图:
2)Command windows
Elapsedtime is 0.073375 seconds.
恢复残差:
ans=
7.3248e-015
4、测量数M与重构成功概率关系曲线绘制例程代码
以下测试代码基本与OMP测量数M与重构成功概率关系曲线绘制代码一样。增加了“fprintf('K=%d,M=%d\n',K,M);”,可以观察程序运行进度。
clear all;close all;clc;
%% 参数配置初始化
CNT = 1000;%对于每组(K,M,N),重复迭代次数
N = 256;%信号x的长度
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
K_set = [4,12,20,28,36];%信号x的稀疏度集合
Percentage = zeros(length(K_set),N);%存储恢复成功概率
%% 主循环,遍历每组(K,M,N)
tic
forkk=1:length(K_set)
K = K_set(kk);%本次稀疏度
M_set = 2*K:5:N;%M没必要全部遍历,每隔5测试一个就可以了
PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率
for mm = 1:length(M_set)
M = M_set(mm);%本次观测值个数
fprintf('K=%d,M=%d\n',K,M);
P = 0;
for cnt = 1:CNT%每个观测值个数均运行CNT次
Index_K=randperm(N);
x = zeros(N,1);
x(Index_K(1:K))=5*randn(K,1);%x为K稀疏的,且位置是随机的
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
theta = CS_CoSaMP(y,A,K);%恢复重构信号theta
x_r = Psi * theta;% x=Psi * theta
if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功
P = P + 1;
end
end
PercentageK(mm)=P/CNT*100;%计算恢复概率
end
Percentage(kk,1:length(M_set))=PercentageK;
end
toc
save CoSaMPMtoPercentage1000%运行一次不容易,把变量全部存储下来
%% 绘图
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
forkk=1:length(K_set)
K = K_set(kk);
M_set = 2*K:5:N;
L_Mset = length(M_set);
plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号
hold on;
end
本程序运行结果:
参考文献:
[1]D. Needell, J.A. Tropp.CoSaMP: Iterative signal recoveryfrom incomplete and inaccurate samples.http://arxiv.org/pdf/0803.2392v2.pdf
[2]D.Needell, J.A. Tropp.CoSaMP: Iterative signal recoveryfrom incomplete and inaccurate samples[J]. Communications of theACM,2010,53(12):93-100.
(http://dl.acm.org/citation.cfm?id=1859229)
[3]
彬彬有礼
.
压缩感知重构算法之压缩采样匹配追踪(CoSaMP)
.
http://blog.csdn.net/jbb0523/article/details/45441361
转载请注明原文地址: https://ju.6miu.com/read-669927.html