bzoj4659: Lcm

    xiaoxiao2021-04-14  87

    链接

      http://www.lydsy.com/JudgeOnline/problem.php?id=4659

    题解

      

    ans=i=1nj=1mlcm(i,j)[gcd(i,j)]    =i=1nj=1mlcm(i,j)μ(gcd(i,j))2   这里用 μ(gcd(i,j))2 意思就是,当 gcd(i,j) 有平方因子的时候就乘1,否则就乘0。   令 g(x)=(x)(x+1)2   你就各种推啊推,最后    ans=x=1ng(nx)g(mx)xd|xmu(xd)xdμ(d)2   然后令 f(x)=xd|xmu(xd)xdμ(d)2    O(nlog2n) 预处理, O(TN) 处理询问。   复杂度太高了,对 f() 打个表,发现那些只有一个质因子的数的函数值在次数>3的时候就等于0了,对这些数特殊处理之后就可以线性筛   复杂度降到 O(n)

    代码

    //线性筛+莫比乌斯反演(nlogn) #include <cstdio> #include <algorithm> #define maxn 5000001 #define lim 1152921504606846976ll #define mod 1073741824ll #define ll long long using namespace std; ll N, f[maxn]; int prime[maxn], mu[maxn], h[maxn], g[maxn], q[maxn][2]; bool mark[maxn]; void init() { int i, j; mu[1]=1; for(i=2;i<=N;i++) { if(!mark[i])prime[++prime[0]]=i, mu[i]=-1; for(j=1;j<=prime[0] and i*prime[j]<=N;j++) { mark[i*prime[j]]=1; if(i%prime[j]==0){mu[i*prime[j]]=0;break;} mu[i*prime[j]]=-mu[i]; } } for(i=1;i<=N;i++)h[i]=mu[i]*i, mu[i]=mu[i]>0?mu[i]:-mu[i]; for(i=1;i<=N;i++)for(j=i;j<=N;j+=i) { f[j]+=h[j/i]*mu[i]; if(f[j]>lim or -f[j]>lim)f[j]%=mod; } for(i=1;i<=N;i++)f[i]=(f[i-1]+i*f[i])%mod; for(i=1;i<=N;i++)g[i]=((ll)i*(i+1)>>1)%mod; } void work(ll n, ll m) { ll i, last, ans=0; if(n>m)swap(n,m); for(i=1;i<=n;i=last+1) { last=min(n/(n/i),m/(m/i)); ans+=g[n/i]*g[m/i]%mod*(f[last]-f[i-1]); if(ans>lim)ans%=mod; } printf("%lld\n",(ans%mod+mod)%mod); } inline ll read(ll x=0) { char c=getchar(); while(c<48 and c>57)c=getchar(); while(c>=48 and c<=57)x=(x<<1)+(x<<3)+c-48, c=getchar(); return x; } int main() { ll T, i; for(T=read(),i=1;i<=T;i++) { q[i][0]=read(), q[i][1]=read(); N=max((int)N,max(q[i][0],q[i][1])); } init(); for(i=1;i<=T;i++)work(q[i][0],q[i][1]); return 0; } //线性筛+莫比乌斯反演 O(N) #include <cstdio> #include <algorithm> #include <cmath> #define maxn 5000001 #define lim 1152921504606846976ll #define mod 1073741824ll #define ll long long using namespace std; ll N, f[maxn]; int prime[maxn], mu[maxn], g[maxn], q[maxn][2], pr[maxn]; bool mark[maxn]; void init() { int i, j, t; mu[1]=1; f[1]=1; for(i=2;i<=N;i++) { if(!mark[i])prime[++prime[0]]=i, f[i]=-i+1, pr[i]=i; else { if(i==pr[i]) { t=int(sqrt(i)); if(!mark[t] and t*t==i)f[i]=-(int)sqrt(i); } else f[i]=f[i/pr[i]]*f[pr[i]]; } for(j=1;j<=prime[0] and i*prime[j]<=N;j++) { mark[i*prime[j]]=1, pr[i*prime[j]]=prime[j]; if(i%prime[j]==0){pr[i*prime[j]]=pr[i]*prime[j];break;} } } for(i=1;i<=N;i++)f[i]=(f[i-1]+i*f[i])%mod; for(i=1;i<=N;i++)g[i]=((ll)i*(i+1)>>1)%mod; } void work(ll n, ll m) { ll i, last, ans=0; if(n>m)swap(n,m); for(i=1;i<=n;i=last+1) { last=min(n/(n/i),m/(m/i)); ans+=g[n/i]*g[m/i]%mod*(f[last]-f[i-1]); if(ans>lim)ans%=mod; } printf("%lld\n",(ans%mod+mod)%mod); } inline ll read(ll x=0) { char c=getchar(); while(c<48 and c>57)c=getchar(); while(c>=48 and c<=57)x=(x<<1)+(x<<3)+c-48, c=getchar(); return x; } int main() { ll T, i; for(T=read(),i=1;i<=T;i++) { q[i][0]=read(), q[i][1]=read(); N=max((int)N,max(q[i][0],q[i][1])); } init(); for(i=1;i<=T;i++)work(q[i][0],q[i][1]); return 0; }
    转载请注明原文地址: https://ju.6miu.com/read-669953.html

    最新回复(0)