tensorflow33《TensorFlow实战》笔记-06-01 TensorFlow实现AlexNet code

    xiaoxiao2021-04-14  51

    # 《TensorFlow实战》06 TensorFlow实现经典卷积神经网络 # win10 Tensorflow1.0.1 python3.5.3 # CUDA v8.0 cudnn-8.0-windows10-x64-v5.1 # filename:sz06.01.py # TensorFlow实现AlexNet # 参考内容 # https://github.com/tensorflow/models/blob/master/tutorials/image/alexnet/alexnet_benchmark.py # https://github.com/tensorflow/models.git # tensorflow_models\tutorials\image\alexnet\alexnet_benchmark.py from datetime import datetime import math import time import tensorflow as tf batch_size = 32 num_batches = 100 def print_activations(t): print(t.op.name, ' ', t.get_shape().as_list()) def infrence(images): parameters = [] with tf.name_scope('conv1') as scope: kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype = tf.float32, stddev = 1e-1), name = 'weights') conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding = 'SAME') biases = tf.Variable(tf.constant(0.0, shape = [64], dtype = tf.float32), trainable = True, name = 'biases') bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name = scope) print_activations(conv1) parameters = [kernel, biases] lrn1 = tf.nn.lrn(conv1, 4, bias = 1.0, alpha = 0.001/9, beta = 0.75, name = 'lrn1') pool1 = tf.nn.max_pool(lrn1, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'VALID', name = 'pool1') print_activations(pool1) with tf.name_scope('conv2') as scope: kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype = tf.float32, stddev = 1e-1), name = 'weights') conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding = 'SAME') biases = tf.Variable(tf.constant(0.0, shape=[192], dtype = tf.float32), trainable = True, name = 'biases') bias = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv2) lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha = 0.001/9, beta = 0.75, name = 'lrn2') pool2 = tf.nn.max_pool(lrn2, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'VALID', name = 'pool2') print_activations(pool2) with tf.name_scope('conv3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384], dtype = tf.float32, stddev = 1e-1), name = 'weights') conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding = 'SAME') biases = tf.Variable(tf.constant(0.0, shape=[384], dtype = tf.float32), trainable=True, name = 'biases') bias = tf.nn.bias_add(conv, biases) conv3 = tf.nn.relu(bias, name = scope) parameters += [kernel, biases] print_activations(conv3) with tf.name_scope('conv4') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype = tf.float32, stddev = 1e-1), name = 'weights') conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype = tf.float32), trainable = True, name = 'biases') bias = tf.nn.bias_add(conv, biases) conv4 = tf.nn.relu(bias, name = scope) parameters += [kernel, biases] print_activations(conv4) with tf.name_scope('conv5') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype = tf.float32, stddev=1e-1), name = 'weights') conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv5 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv5) pool5 =tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding = 'VALID', name = 'pool5') print_activations(pool5) return pool5, parameters def time_tensorflow_run(session, target, info_string): num_steps_burn_in = 10 total_duration = 0.0 total_duration_squared = 0.0 for i in range(num_batches + num_steps_burn_in): start_time = time.time() _ = session.run(target) duration = time.time() - start_time if i >= num_steps_burn_in: if not i %10: print('%s: step %d, duration = %.3f' %(datetime.now(), i - num_steps_burn_in, duration)) total_duration += duration total_duration_squared += duration * duration mn = total_duration / num_batches vr = total_duration_squared / num_batches - mn * mn sd = math.sqrt(vr) print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %(datetime.now(), info_string, num_batches, mn, sd)) def run_benchmark(): with tf.Graph().as_default(): image_size = 224 images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype = tf.float32, stddev = 1e-1)) pool5, parameters = infrence(images) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) time_tensorflow_run(sess, pool5, "Forward") objective = tf.nn.l2_loss(pool5) grad = tf.gradients(objective, parameters) time_tensorflow_run(sess, grad, "Forward-backward") run_benchmark() ''' conv1 [32, 56, 56, 64] pool1 [32, 27, 27, 64] conv2 [32, 27, 27, 192] pool2 [32, 13, 13, 192] conv3 [32, 13, 13, 384] conv4 [32, 13, 13, 256] conv5 [32, 13, 13, 256] pool5 [32, 6, 6, 256] 2017-04-13 16:28:25.177867: step 0, duration = 0.059 2017-04-13 16:28:25.769441: step 10, duration = 0.059 2017-04-13 16:28:26.361012: step 20, duration = 0.059 2017-04-13 16:28:26.951583: step 30, duration = 0.059 2017-04-13 16:28:27.543156: step 40, duration = 0.059 2017-04-13 16:28:28.131719: step 50, duration = 0.059 2017-04-13 16:28:28.724311: step 60, duration = 0.059 2017-04-13 16:28:29.314866: step 70, duration = 0.059 2017-04-13 16:28:29.905437: step 80, duration = 0.059 2017-04-13 16:28:30.496006: step 90, duration = 0.059 2017-04-13 16:28:31.033435: Forward across 100 steps, 0.059 +/- 0.001 sec / batch 2017-04-13 16:28:33.830872: step 0, duration = 0.204 2017-04-13 16:28:35.877314: step 10, duration = 0.203 2017-04-13 16:28:37.911570: step 20, duration = 0.204 2017-04-13 16:28:39.954005: step 30, duration = 0.205 2017-04-13 16:28:41.987445: step 40, duration = 0.205 2017-04-13 16:28:44.026828: step 50, duration = 0.203 2017-04-13 16:28:46.063242: step 60, duration = 0.204 2017-04-13 16:28:48.103667: step 70, duration = 0.204 2017-04-13 16:28:50.141083: step 80, duration = 0.202 2017-04-13 16:28:52.172485: step 90, duration = 0.203 2017-04-13 16:28:54.002348: Forward-backward across 100 steps, 0.204 +/- 0.001 sec / batch '''
    转载请注明原文地址: https://ju.6miu.com/read-670204.html

    最新回复(0)