1.什么是TLV格式?
TLV即Tag-Length-Value,常在IC卡与POS终端设备中通过这样的一个应用通信协议进行数据交换。 金融系统中的TLV是BER-TLV编码的一个特例编码规范,而BER-TLV是ISO定义中的规范。在TLV的定义中,可以知道它包括三个域,分别为:标签域(Tag),长度域(Length),内容域(Value)。这里的长度域的值实际上就是内容域的长度。 其实,在BER编码的方式有两种情况,一种是确定长度的方式,一种是不确定长度的方式,而金融TLV选择了确定长度的方式,这样在设备之间的数据传输量上就可以减少。
2.Tag域
3.Length域
当b8为0时,该字节的b7-b1作为value域的长度;当b8为1时,b7-b1作为后续字节的长度。例:10000011,代表后续还有3个字节作为value域的长度(本字节不算,本字节变为作为一个Length的索引)。3个字节代表value的长度,意味着什么呢,意味着内容的长度当需要很大的时候,字节的位数就会跟着越高,3个字节就代表最大可以有256*256*256的长度。
4.Value域
分成两种情况考虑,就是前面说到的Tag分成两个数据元结构,一种是简单数据元结构,一种是复合数据元架构:
先来看看简单数据元结构:
复合数据元结构:
后面的Value说明:Primitive or constructed BER-TLV data object number,包含一个简单数据元结构或者也可以是一个符合数据元结构。这样可以看出,算法中必须要实现Tag的嵌套功能,递归算法不可少。
5.TLV格式数据实例
数据: 5F2D027A68
Tag域
5F → 01011111 → 5F 2D → 00101101 → 5F2D
Length域
02 → 00000010 → 02(2字节)
Value域
7A68
6.算法实现( C++)
根据以上的说明现在来实现它的打包解包的算法(打包的目的是将一个从终端上发的请求数据——字节数组,构造成一系列的TLV结构实体;解包的目的刚好相反,就是将TLV结构实体解析成字节数组,然后通过IC卡发送到终端上)。
首先定义一个TLV结构实体:
// TLV结构体 struct TLVEntity { unsigned char* Tag; //标记 unsigned char* Length; //数据长度 unsigned char* Value; //数据 unsigned int TagSize; //标记占用字节数 unsigned int LengthSize; //数据长度占用字节数 TLVEntity* Sub_TLVEntity; //子嵌套TLV实体 }; 其中TagSize代表Tag字段的字节长度,LengthSize代表Length的字节长度,这里的Length记住要使用char*,由于前面说过,Length可能包含 多个字节,通过多个字节确定Value域的长度,Sub_TLVEntity作为子嵌套的TLV结构体。定义一个TLVPackage的打包类:
TLVPackage.h:
// TLV打包类 class TLVPackage { public: TLVPackage(); virtual ~TLVPackage(); //构造TLV实体 static void Construct(unsigned char* buffer, unsigned int bufferLength, TLVEntity* tlvEntity, unsigned int& entityLength, unsigned int status=0); //解析TLV字节数组 static void Parse(TLVEntity* tlvEntity, unsigned int entityLength, unsigned char* buffer, unsigned int& bufferLength); }; 具体实现 方法 :
// 构造TLV void TLVPackage:: Construct( unsigned char* buffer, unsigned int bufferLength, TLVEntity* tlvEntity, unsigned int& entityLength, unsigned int status ) { int currentTLVIndex = 0; int currentIndex = 0; int currentStatus = 'T'; //状态字符 unsigned long valueSize = 0; while(currentIndex < bufferLength) { switch(currentStatus) { case 'T': valueSize = 0; //判断是否单一结构 if((status == 1 && buffer[currentIndex] & 0x20) != 0x20) { tlvEntity[currentTLVIndex].Sub_TLVEntity = NULL; //单一结构时将子Tag置空 //判断是否多字节Tag if((buffer[currentIndex] & 0x1f) == 0x1f) { int endTagIndex = currentIndex; while((buffer[++endTagIndex] & 0x80) == 0x80); //判断第二个字节的最高位是否为1 int tagSize = endTagIndex - currentIndex + 1; //计算Tag包含多少字节 tlvEntity[currentTLVIndex].Tag = new unsigned char[tagSize]; memcpy(tlvEntity[currentTLVIndex].Tag, buffer + currentIndex, tagSize); tlvEntity[currentTLVIndex].Tag[tagSize] = 0; tlvEntity[currentTLVIndex].TagSize = tagSize; currentIndex += tagSize; } else { tlvEntity[currentTLVIndex].Tag = new unsigned char[1]; memcpy(tlvEntity[currentTLVIndex].Tag, buffer + currentIndex, 1); tlvEntity[currentTLVIndex].Tag[1] = 0; tlvEntity[currentTLVIndex].TagSize = 1; currentIndex += 1; } } else { //判断是否多字节Tag if((buffer[currentIndex] & 0x1f) == 0x1f) { int endTagIndex = currentIndex; while((buffer[++endTagIndex] & 0x80) == 0x80); //判断第二个字节的最高位是否为1 int tagSize = endTagIndex - currentIndex + 1; //计算Tag包含多少字节 tlvEntity[currentTLVIndex].Tag = new unsigned char[tagSize]; memcpy(tlvEntity[currentTLVIndex].Tag, buffer + currentIndex, tagSize); tlvEntity[currentTLVIndex].Tag[tagSize] = 0; tlvEntity[currentTLVIndex].TagSize = tagSize; currentIndex += tagSize; } else { tlvEntity[currentTLVIndex].Tag = new unsigned char[1]; memcpy(tlvEntity[currentTLVIndex].Tag, buffer + currentIndex, 1); tlvEntity[currentTLVIndex].Tag[1] = 0; tlvEntity[currentTLVIndex].TagSize = 1; currentIndex += 1; } //分析SubTag int subLength = 0; unsigned char* temp; if((buffer[currentIndex] & 0x80) == 0x80) { for (int index = 0; index < 2; index++) { subLength += buffer[currentIndex + 1 + index] << (index * 8); //计算Length域的长度 } temp = new unsigned char[subLength]; memcpy(temp, buffer + currentIndex + 3, subLength); } else { subLength = buffer[currentIndex]; temp = new unsigned char[subLength]; memcpy(temp, buffer + currentIndex + 1, subLength); } temp[subLength] = 0; //memcpy(temp, buffer + currentIndex + 1, subLength); unsigned int oLength; tlvEntity[currentTLVIndex].Sub_TLVEntity = new TLVEntity[1]; Construct(temp, subLength, tlvEntity[currentTLVIndex].Sub_TLVEntity, oLength); } currentStatus = 'L'; break; case 'L': //判断长度字节的最高位是否为1,如果为1,则该字节为长度扩展字节,由下一个字节开始决定长度 if((buffer[currentIndex] & 0x80) != 0x80) { tlvEntity[currentTLVIndex].Length = new unsigned char[1]; memcpy(tlvEntity[currentTLVIndex].Length, buffer + currentIndex, 1); tlvEntity[currentTLVIndex].Length[1] = 0; tlvEntity[currentTLVIndex].LengthSize = 1; valueSize = tlvEntity[currentTLVIndex].Length[0]; currentIndex += 1; } else { //为1的情况 unsigned int lengthSize = buffer[currentIndex] & 0x7f; currentIndex += 1; //从下一个字节开始算Length域 for (int index = 0; index < lengthSize; index++) { valueSize += buffer[currentIndex + index] << (index * 8); //计算Length域的长度 } tlvEntity[currentTLVIndex].Length = new unsigned char[lengthSize]; memcpy(tlvEntity[currentTLVIndex].Length, buffer + currentIndex, lengthSize); tlvEntity[currentTLVIndex].Length[lengthSize] = 0; tlvEntity[currentTLVIndex].LengthSize = lengthSize; currentIndex += lengthSize; } currentStatus = 'V'; break; case 'V': tlvEntity[currentTLVIndex].Value = new unsigned char[valueSize]; memcpy(tlvEntity[currentTLVIndex].Value, buffer + currentIndex, valueSize); tlvEntity[currentTLVIndex].Value[valueSize] = 0; currentIndex += valueSize; //进入下一个TLV构造循环 currentTLVIndex += 1; currentStatus = 'T'; break; default: return; } } entityLength = currentTLVIndex; } // 解析TLV void TLVPackage::Parse( TLVEntity* tlvEntity, unsigned int entityLength, unsigned char* buffer, unsigned int& bufferLength ) { int currentIndex = 0; int currentTLVIndex = 0; unsigned long valueSize = 0; while(currentTLVIndex < entityLength) { valueSize = 0; TLVEntity entity = tlvEntity[currentTLVIndex]; memcpy(buffer + currentIndex, entity.Tag, entity.TagSize); //解析Tag currentIndex += entity.TagSize; for (int index = 0; index < entity.LengthSize; index++) { valueSize += entity.Length[index] << (index * 8); //计算Length域的长度 } if(valueSize > 127) { buffer[currentIndex] = 0x80 | entity.LengthSize; currentIndex += 1; } memcpy(buffer + currentIndex, entity.Length, entity.LengthSize); //解析Length currentIndex += entity.LengthSize; //判断是否包含子嵌套TLV if(entity.Sub_TLVEntity == NULL) { memcpy(buffer + currentIndex, entity.Value, valueSize); //解析Value currentIndex += valueSize; } else { unsigned int oLength; Parse(entity.Sub_TLVEntity, 1, buffer + currentIndex, oLength); //解析子嵌套TLV currentIndex += oLength; } currentTLVIndex++; } buffer[currentIndex] = 0; bufferLength = currentIndex; } 然后写测试程序:
// 上发测试数据 unsigned char requestBuf[] = { 0x9F, 0x1C, 0x12, 0x33, 0x33, 0x30, 0x32, 0x32, 0x37, 0x31, 0x39, 0x36, 0x32, 0x30, 0x34, 0x30, 0x34, 0x32, 0x37, 0x31, 0x38, 0x9F, 0x62, 0x01, 0x01, 0x57, 0x12, 0x62, 0x22, 0x89, 0x00, 0x00, 0x02, 0x91, 0x01, 0xD0, 0x90, 0x32, 0x01, 0x02, 0x47, 0x17, 0x13, 0x00, 0x0F, 0x5F, 0x20, 0x0A, 0x48, 0x55, 0x47, 0x55, 0x4F, 0x20, 0x4D, 0x49, 0x4E, 0x47, 0x9F, 0x1F, 0x3C, 0x25, 0x39, 0x39, 0x36, 0x32, 0x32, 0x32, 0x38, 0x39, 0x30, 0x30, 0x30, 0x30, 0x30, 0x32, 0x39, 0x31, 0x30, 0x31, 0x5E, 0x47, 0x55, 0x4F, 0x20, 0x4D, 0x49, 0x4E, 0x47, 0x2F, 0x48, 0x55, 0x5E, 0x30, 0x39, 0x30, 0x33, 0x32, 0x30, 0x31, 0x30, 0x32, 0x34, 0x37, 0x31, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x32, 0x38, 0x39, 0x30, 0x30, 0x3F }; TLVEntity tlvEntity[TLV_MAX_LENGTH]; unsigned int tlv_count; //构造TLV TLVPackage::Construct(requestBuf, sizeof(requestBuf), tlvEntity, tlv_count); unsigned char parseBuf[1024]; unsigned int buf_count; //解析TLV TLVPackage::Parse(tlvEntity, tlv_count, parseBuf, buf_count); if(strncmp((char*)parseBuf, (char*)requestBuf, sizeof(requestBuf)) == 0) { AfxMessageBox("TRUE"); } else { AfxMessageBox("FALSE"); } 最后测试结果中,可以得到最后将弹出“TRUE”的对话框。证明构造TLV得到的TLVEntity,再对这个实体进行解析,可以的到解析后的字节 数组, 最后通过strncmp的方法比较判断,是否原始字节数组和解析后的字节数组是否一致。