1.题目描述:
这题无非实现两个功能,更改某个数的值、询问区间内的最大值,很容易想到用线段树维护。
通过这题我基本清楚了线段树读入操作:大致有离线读入(先读入数据再对区间建树),和直接读入,一般来说离线读入比直接读入多一个常数,但是一些情况下是更优化的。
4.AC代码:
#include <bits/stdc++.h> #define INF 0x3f3f3f3f #define maxn 200100 #define lson root << 1 #define rson root << 1 | 1 #define N 1111 #define eps 1e-6 #define pi acos(-1.0) #define e exp(1.0) using namespace std; const int mod = 1e9 + 7; typedef long long ll; typedef unsigned long long ull; struct tree { int l, r, w; } t[maxn * 4]; void pushup(int root) { t[root].w = max(t[lson].w, t[rson].w); } void build(int l, int r, int root) { t[root].l = l; t[root].r = r; if (l == r) { scanf("%d", &t[root].w); return; } int mid = l + r >> 1; build(l, mid, lson); build(mid + 1, r, rson); pushup(root); } void update(int pos, int val, int l, int r, int root) { if (l == r) { t[root].w = val; return; } int mid = l + r >> 1; if (pos <= mid) update(pos, val, l, mid, lson); else update(pos, val, mid + 1, r, rson); pushup(root); } int query(int l, int r, int root) { int ans = 0; if (t[root].l >= l && t[root].r <= r) { ans = max(ans, t[root].w); return ans; } int mid = t[root].l + t[root].r >> 1; if (l <= mid) ans = max(ans, query(l, r, lson)); if (r > mid) ans = max(ans, query(l, r, rson)); return ans; } int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); long _begin_time = clock(); #endif int n, m; char op[3]; while (~scanf("%d%d", &n, &m)) { build(1, n, 1); while (m--) { scanf("%s", op); int a, b; scanf("%d%d", &a, &b); if (op[0] == 'Q') printf("%d\n", query(a, b, 1)); else update(a, b, 1, n, 1); } } #ifndef ONLINE_JUDGE long _end_time = clock(); printf("time = %ld ms.", _end_time - _begin_time); #endif return 0; }