STM32的CAN波特率计算

    xiaoxiao2021-04-18  65

    转自:http://www.61ic.com/Technology/embed/201103/31046.html

    STM32里的CAN 支持2.0A,2.0B, 带有FIFO,中断等, 这里主要提一下内部的时钟应用. bxCAN挂接在APB1总线上,采用总线时钟,所以我们需要知道APB1的总线时钟是多少. 我们先看看下图,看看APB1总线时钟: APB1时钟取自AHB的分频, 而AHB又取自系统时钟的分频, 系统时钟可选HSI,HSE, PLLCLK, 这个在例程的RC设置里都有的, 然后再看看有了APB1的时钟后,如何算CAN的总线速率, 先看下图: 有了上边的这个图,基本就清楚了. 总线时钟MHz (3+TS1+TS2)*(BRP+1) =================================================== 下面是我的计算: CAN_InitStructure.CAN_SJW = CAN_SJW_1tq; CAN_InitStructure.CAN_BS1 = CAN_BS1_3tq; 注意//#define CAN_BS1_3tq ((uint8_t)0x02) /*!< 3 time quantum */ CAN_InitStructure.CAN_BS2 = CAN_BS2_5tq; CAN_InitStructure.CAN_Prescaler = 4;//2 nominal bit time(3+5+1)tq=9tq 关于分频系数 查看 system_stm32f10x.c下面的 static void SetSysClockTo72(void) 函数 /* HCLK = SYSCLK */ /* PCLK2 = HCLK */ /* PCLK1 = HCLK/2 */ 所以can时钟 72MHZ/2/4=9 Mhz tq=1/36Mhz 波特率为 1/nominal bit time= 9/9=1MHZ ========================================= ----------------------------------------------- ==================================================== void CAN_Configuration(void) { CAN_InitTypeDef CAN_InitStructure; CAN_FilterInitTypeDef CAN_FilterInitStructure; /* CAN register init */ CAN_DeInit(); CAN_StructInit(&CAN_InitStructure); /* CAN cell init */ CAN_InitStructure.CAN_TTCM=DISABLE; CAN_InitStructure.CAN_ABOM=DISABLE; CAN_InitStructure.CAN_AWUM=DISABLE; CAN_InitStructure.CAN_NART=DISABLE; CAN_InitStructure.CAN_RFLM=DISABLE; CAN_InitStructure.CAN_TXFP=DISABLE; CAN_InitStructure.CAN_Mode=CAN_Mode_Normal; CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_9tq; CAN_InitStructure.CAN_BS2=CAN_BS2_8tq; CAN_InitStructure.CAN_Prescaler=200; CAN_Init(&CAN_InitStructure); /* CAN filter init */ CAN_FilterInitStructure.CAN_FilterNumber=0; CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMask; CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_16bit; CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000; CAN_FilterInitStructure.CAN_FilterIdLow=0x0000; CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000; CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000; CAN_FilterInitStructure.CAN_FilterFIFOAssignment=0; CAN_FilterInitStructure.CAN_FilterActivation=ENABLE; CAN_FilterInit(&CAN_FilterInitStructure); } 注意//#define CAN_BS1_3tq ((uint8_t)0x02) /*!< 3 time quantum */ 拨特率10K,公式:72MHZ/2/200/(1+9+8)=0.01,即10K,和SJA1000测试通过  ================================================ 120欧姆电阻要加上!!! 哦 确实是 CAN->BTR = (u32)((u32)CAN_InitStruct->CAN_Mode << 30) | ((u32)CAN_InitStruct->CAN_SJW << 24) | ((u32)CAN_InitStruct->CAN_BS1 << 16) | ((u32)CAN_InitStruct->CAN_BS2 << 20) | ((u32)CAN_InitStruct->CAN_Prescaler - 1); 总结一下 Fpclk=36M 时 can波特率为250k 的配置为 /* CAN cell init */ CAN_InitStructure.CAN_TTCM=DISABLE; CAN_InitStructure.CAN_ABOM=DISABLE; CAN_InitStructure.CAN_AWUM=DISABLE; CAN_InitStructure.CAN_NART=DISABLE; CAN_InitStructure.CAN_RFLM=DISABLE; CAN_InitStructure.CAN_TXFP=DISABLE; CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack; CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_8tq; CAN_InitStructure.CAN_BS2=CAN_BS2_7tq; CAN_InitStructure.CAN_Prescaler=9; CAN_Init(&CAN_InitStructure); 250k ====================================== 的:将can总线波特率设置为250k     在官方的can例程上 给出了100k 查询 和500k 中断方式的例子 分别设置如下: CAN_Polling: /* CAN cell init */ CAN_InitStructure.CAN_TTCM=DISABLE; CAN_InitStructure.CAN_ABOM=DISABLE; CAN_InitStructure.CAN_AWUM=DISABLE; CAN_InitStructure.CAN_NART=DISABLE; CAN_InitStructure.CAN_RFLM=DISABLE; CAN_InitStructure.CAN_TXFP=DISABLE; CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack; CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_8tq; CAN_InitStructure.CAN_BS2=CAN_BS2_7tq; CAN_InitStructure.CAN_Prescaler=5; CAN_Init(&CAN_InitStructure); 100k /* CAN cell init */ CAN_Interrupt CAN_InitStructure.CAN_TTCM=DISABLE; CAN_InitStructure.CAN_ABOM=DISABLE; CAN_InitStructure.CAN_AWUM=DISABLE; CAN_InitStructure.CAN_NART=DISABLE; CAN_InitStructure.CAN_RFLM=DISABLE; CAN_InitStructure.CAN_TXFP=DISABLE; CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack; CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_8tq; CAN_InitStructure.CAN_BS2=CAN_BS2_7tq; CAN_InitStructure.CAN_Prescaler=1; CAN_Init(&CAN_InitStructure); //500k can时钟是RCC_APB1PeriphClock,你要注意CAN时钟频率 CAN波特率 = RCC_APB1PeriphClock/CAN_SJW+CAN_BS1+CAN_BS2/CAN_Prescaler; 如果CAN时钟为8M, CAN_SJW = 1,CAN_BS1 = 8,CAN_BS2 = 7,CAN_Prescaler = 2 那么波特率就是=8M/(1+8+7)/2=250K ========================================= 得到500Kb/s的波特率 CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_8tq; CAN_InitStructure.CAN_BS2=CAN_BS2_7tq; CAN_InitStructure.CAN_Prescaler=1; 每一位的Tq数目 = 1 (固定SYNC_SEG) + 8 (BS1) + 7 (BS2) = 16 如果CAN时钟是 8 MHz : (8M / 1 ) / 16 = 500K 其中: 1 为分频系数 16 为每一位的Tq数目 为了设置为 100K, 把分频系数改为5即可, BS1 BS2 不变 每一位的Tq数目 = 1 (固定) + 8 (BS1) + 7 (BS2) = 16 如果CAN时钟是 8 MHz : (8M / 5 ) / 16 = 100K 如果想得到 1M 的波特率, CAN时钟仍然是 8 MHz的情况下, 分频系数不变 应该改变 BS1 BS2 CAN_InitStructure.CAN_BS1=CAN_BS1_5tq; CAN_InitStructure.CAN_BS2=CAN_BS2_2tq; 每一位的Tq数目 = 1 (固定) + 5 (BS1) + 2 (BS2) = 8 如果CAN时钟是 8 MHz : (8M / 1 ) / 8 = 1000K 另外尽可能的把采样点设置为 CiA 推荐的值: 75% when 波特率 > 800K 80% when 波特率 > 500K 87.5% when 波特率 <= 500K 所以对于 100K 的波特率(假定使用 8MHz 时钟) 可以修改该BS1 BS2 为: CAN_InitStructure.CAN_Prescaler=5; CAN_InitStructure.CAN_BS1=CAN_BS1_13tq; CAN_InitStructure.CAN_BS2=CAN_BS2_2tq; (1+13) / (1+13+2) = 87.5% 所以对于 500K 的波特率(假定使用 8MHz 时钟) 可以修改该BS1 BS2 为: CAN_InitStructure.CAN_Prescaler=1; CAN_InitStructure.CAN_BS1=CAN_BS1_13tq; CAN_InitStructure.CAN_BS2=CAN_BS2_2tq; (1+13) / (1+13+2) = 87.5% 所以对于 1000K 的波特率(假定使用 8MHz 时钟) 可以修改该BS1 BS2 为: CAN_InitStructure.CAN_Prescaler=1; CAN_InitStructure.CAN_BS1=CAN_BS1_5tq; CAN_InitStructure.CAN_BS2=CAN_BS2_2tq; (1+5) / (1+5+2) = 75% 个人见解, 仅供参考。 上边这个公式算出来的就是CAN的速率了.

    转载请注明原文地址: https://ju.6miu.com/read-675582.html

    最新回复(0)