指数平滑法
其实我想说自己百度的… 只有懂的人才会找到这篇文章… 不懂的人…看了我的文章…还是不懂哈哈哈
指数平滑法相比于移动平均法,它是一种特殊的加权平均方法。简单移动平均法用的是算术平均数,近期数据对预测值的影响比远期数据要大一些,而且越近的数据影响越大。指数平滑法正是考虑了这一点,并将其权值按指数递减的规律进行分配,越接近当前的数据,权重越大;反之,远离当前的数据,其权重越小。指数平滑法按照平滑的次数,一般可分为一次指数平滑法、二次指数平滑法和三次指数平滑法等。然而一次指数平滑法适用于无趋势效应、呈平滑趋势的时间序列的预测和分析,二次指数平滑法多适用于呈线性变化的时间序列预测。
具体公式还是百度吧…
材料
1.python3.5 2.numpy 3.matplotlib 4.国家社科基金1995-2015年立项数据
需求
预测2016年和2017年国家社科基金项目立项数量
数据
#year time_id number
1994 1 10
1995 2 3
1996 3 27
1997 4 13
1998 5 12
1999 6 13
2000 7 14
2001 8 23
2002 9 32
2003 10 30
2004 11 36
2005 12 40
2006 13 58
2007 14 51
2008 15 73
2009 16 80
2010 17 106
2011 18 127
2012 19 135
2013 20 161
2014 21 149
2015 22 142
代码
import numpy
as np
from matplotlib
import pyplot
as plt
def exponential_smoothing(alpha, s):
s2 = np.zeros(s.shape)
s2[
0] = s[
0]
for i
in range(
1, len(s2)):
s2[i] = alpha*s[i]+(
1-alpha)*s2[i-
1]
return s2
def show_data(new_year, pre_year, data, s_pre_double, s_pre_triple):
year, time_id, number = data.T
plt.figure(figsize=(
14,
6), dpi=
80)
plt.plot(year, number, color=
'blue', label=
"actual value")
plt.plot(new_year[
1:], s_pre_double[
2:],color=
'red', label=
"double predicted value")
plt.plot(new_year[
1:], s_pre_triple[
2:],color=
'green', label=
"triple predicted value")
plt.legend(loc=
'lower right')
plt.title(
'Projects')
plt.xlabel(
'year')
plt.ylabel(
'number')
plt.xticks(new_year)
plt.show()
def main():
alpha =
.70
pre_year = np.array([
2016,
2017])
data_path =
r'data1.txt'
data = np.loadtxt(data_path)
year, time_id, number = data.T
initial_line = np.array([
0,
0, number[
0]])
initial_data = np.insert(data,
0, values=initial_line, axis=
0)
initial_year, initial_time_id, initial_number = initial_data.T
s_single = exponential_smoothing(alpha, initial_number)
s_double = exponential_smoothing(alpha, s_single)
a_double =
2*s_single-s_double
b_double = (alpha/(
1-alpha))*(s_single-s_double)
s_pre_double = np.zeros(s_double.shape)
for i
in range(
1, len(initial_time_id)):
s_pre_double[i] = a_double[i-
1]+b_double[i-
1]
pre_next_year = a_double[-
1]+b_double[-
1]*
1
pre_next_two_year = a_double[-
1]+b_double[-
1]*
2
insert_year = np.array([pre_next_year, pre_next_two_year])
s_pre_double = np.insert(s_pre_double, len(s_pre_double), values=np.array([pre_next_year, pre_next_two_year]), axis=
0)
s_triple = exponential_smoothing(alpha, s_double)
a_triple =
3*s_single-
3*s_double+s_triple
b_triple = (alpha/(
2*((
1-alpha)**
2)))*((
6-
5*alpha)*s_single -
2*((
5-
4*alpha)*s_double)+(
4-
3*alpha)*s_triple)
c_triple = ((alpha**
2)/(
2*((
1-alpha)**
2)))*(s_single-
2*s_double+s_triple)
s_pre_triple = np.zeros(s_triple.shape)
for i
in range(
1, len(initial_time_id)):
s_pre_triple[i] = a_triple[i-
1]+b_triple[i-
1]*
1 + c_triple[i-
1]*(
1**
2)
pre_next_year = a_triple[-
1]+b_triple[-
1]*
1 + c_triple[-
1]*(
1**
2)
pre_next_two_year = a_triple[-
1]+b_triple[-
1]*
2 + c_triple[-
1]*(
2**
2)
insert_year = np.array([pre_next_year, pre_next_two_year])
s_pre_triple = np.insert(s_pre_triple, len(s_pre_triple), values=np.array([pre_next_year, pre_next_two_year]), axis=
0)
new_year = np.insert(year, len(year), values=pre_year, axis=
0)
output = np.array([new_year, s_pre_double, s_pre_triple])
print(output)
show_data(new_year, pre_year, data, s_pre_double, s_pre_triple)
if __name__ ==
'__main__':
main()
预测结果
代码及数据
转载请注明原文地址: https://ju.6miu.com/read-675809.html