栈的定义
栈(Stack)是限制仅在表的一端进行插入和删除运算的线性表。
(1)通常称插入、删除的这一端为栈顶 (Top),另一端称为栈底 (Bottom)。
(2)当表中没有元素时称为空栈。
(3)栈为后进先出(Last In First Out)的线性表,简称为 LIFO 表。
栈的修改是按后进先出的原则进行。每次删除(退栈)的总是当前栈中"
最新"的元素,即最后插入(进栈)的元素,而最先插入的是被放在栈的底部,
要到最后才能删除。
【示例】元素是以a1,a2,…,an的顺序进栈,退栈的次序却是an,an-1,…,
a1。
2、栈的基本运算
(1)InitStack(S)
构造一个空栈S。
(2)StackEmpty(S)
判栈空。若S为空栈,则返回TRUE,否则返回FALSE。
(3)StackFull(S)
判栈满。若S为满栈,则返回TRUE,否则返回FALSE。
注意: 该运算只适用于栈的顺序存储结构。
(4)Push(S,x)
进栈。若栈S不满,则将元素x插入S的栈顶。
(5)Pop(S)
定义堆栈ADTStackADT package Stack; public interface StackADT { public void push(Object element);//压栈 public Object pop();//出栈 public boolean isEmpty(); public int size(); public Object peek();//返回栈顶对象的一个引用 public String toString(); }
链式实现:
在栈的一段添加和删除元素,在栈中维护一个指向栈顶的结点和一个count变量指示栈的大小: private LinearNode top; //指向栈顶 private int count;//标记栈的大小 每次出栈和压栈在链表的表头:(也可以再表尾,实现方式不一样而已) top--->元素1--->元素2--->元素3......... 实现(附带测试main): LinkedStack package Stack; import Bag.LinearNode; //为了重点来实现算法,将异常情况直接打印出然后退出程序,不再声明异常类 public class LinkedStack implements StackADT { private LinearNode top; //指向栈顶 private int count;//标记栈的大小 public static void main(String[] args){ LinkedStack stack = new LinkedStack(); System.out.println("将0到10依次压栈"); for(int i = 0;i < 10;i++) stack.push(i); System.out.println("连续执行5次出栈操作"); for(int i = 0;i < 5;i++) stack.pop(); System.out.println("栈为空吗?: " + stack.isEmpty()); System.out.println("栈的大小为: " + stack.size()); System.out.println("栈顶元素为: " + stack.top.getElement()); System.out.println("栈顶元素为: " + stack.peek()); } public LinkedStack() { top = null; count = 0; } public int size() { return count; } public boolean isEmpty() { return (size() == 0); } public void push(Object element) { LinearNode node = new LinearNode(element); node.setNext(top); top = node; count++; } public Object pop() { if(isEmpty()) { System.out.println("stack is empty!"); System.exit(1); } Object result = top.getElement(); top = top.getNext(); count--; return result; } public Object peek() { Object result = top.getElement(); return result; } } 运行结果: 将0到10依次压栈 连续执行5次出栈操作 栈为空吗?: false 栈的大小为: 5 栈顶元素为: 4 栈顶元素为: 4
数组实现:
栈底总是数组下标为0的位置,入栈出栈从数组下标的最后一个元素开始: private Object[] contents; private int top;//top标记下一个入栈的位置,同时也表示栈的容量大小,跟链式实现的count比较一下!!! 实现(附带测试main): ArrayStack package Stack; public class ArrayStack implements StackADT { private Object[] contents; private int top;//top标记下一个入栈的位置,同时也表示栈的容量大小,跟链式实现的count比较一下!!! private static int SIZE = 10; public ArrayStack() { contents = new Object[SIZE]; top = 0; } public void expand(){//借助于申请一个辅助空间,每次扩展容量一倍 Object[] larger = new Object[size()*2]; for(int index = 0;index < top;index++) larger[index] = contents[index]; contents = larger; } public int size() { return top; } public boolean isEmpty() { return (size() == 0); } public void push(Object element) { //if(isEmpty()) //expand(); if(top == contents.length) expand(); contents[top] = element; top++; } public Object pop() { if(isEmpty()) { System.out.println("stack is empty!"); System.exit(1); } Object result = contents[top-1]; contents[top-1] = null;//出栈 top--; return result; } public Object peek() { Object result; if(isEmpty()) result = null; else result = contents[top-1]; return result; } public static void main(String[] args) { ArrayStack stack = new ArrayStack(); System.out.println("将0到24依次压栈,然后连续10次出栈"); for(int i = 0;i < 25;i++) stack.push(i); for(int i = 0;i < 10;i++) stack.pop(); System.out.println("栈的大小为: " + stack.size()); System.out.println("栈为空吗?: " + stack.isEmpty()); System.out.println("栈顶元素为: " + stack.peek()); } } 运行结果: 将0到24依次压栈,然后连续10次出栈 栈的大小为: 15 栈为空吗?: false 栈顶元素为: 14