http://blog.csdn.net/v_JULY_v/article/details/6530142/
磁盘的读写原理和效率磁盘上数据必须用一个三维地址唯一标示:柱面号、盘面号、块号(磁道上的盘块)。
访问某一具体信息由三部分时间组成:查找时间、等待时间、传输时间。
一棵m阶的B+树和m阶的B树的异同点在于:
1.有n棵子树的结点中含有n-1 个关键字; (此处颇有争议,B+树到底是与B 树n棵子树有n-1个关键字 保持一致,还是不一致:B树n棵子树的结点中含有n个关键字,待后续查证。暂先提供两个参考链接:①wikipedia http://en.wikipedia.org/wiki/B+_tree#Overview;②http://hedengcheng.com/?p=525。而下面B+树的图尚未最终确定是否有问题,请读者注意)
2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (而B 树的叶子节点并没有包括全部需要查找的信息)
3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B 树的非终节点也包含需要查找的有效信息)
B*-tree是B+-tree的变体,在B+树的基础上(所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针),B*树中非根和非叶子结点再增加指向兄弟的指针;B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。
B*树分配新结点的概率比B+树要低,空间使用率更高。
红黑树和平衡二叉树区别如下: 1、红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单。 2、平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知。
红黑树和B树应用场景有何不同?
2者都是有序数据结构,可用作数据容器。 红黑树多用在内部排序,即全放在内存中的,微软STL的map和set的内部实现就是红黑树。 B树多用在内存里放不下,大部分数据存储在外存上时。因为B树层数少,因此可以确保每次操作,读取磁盘的次数尽可能的少。
在数据较小,可以完全放到内存中时,红黑树的时间复杂度比B树低。 反之,数据量较大,外存中占主要部分时,B树因其读磁盘次数少,而具有更快的速度。
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;
R树是一种能够有效进行高维空间搜索的数据结构,它已经被广泛应用在各种数据库及其相关的应用中。但R树的处理也具有局限性,它的最佳应用范围是处理2至6维的数据,更高维的存储会变得非常复杂,这样就不适用了。近年来,R树也出现了很多变体,R*树就是其中的一种。这些变体提升了R树的性能,感兴趣的读者可以参考相关文献。文章有任何错误,还望各位读者不吝赐教。本文完。
参考文献以及推荐阅读:
1. Organization and Maintenance of Large Ordered Indices
2. the ubiquitous B tree
3. http://en.wikipedia.org/wiki/Btree (给出了国外一些开源地址)
4. http://en.wikipedia.org/wiki/Btree#Technical_description
5. http://cis.stvincent.edu/html/tutorials/swd/btree/btree.html(include C++ source code)
6. http://slady.net/操作。) 7. Guttman, A.; “R-trees: a dynamic index structure for spatial searching,” ACM, 1984, 14