因为GIL(全局解释器锁)的限制(GIL是用来保证在任意时刻只能有一个控制线程在执行),所以python中的多线程并非真正的多线程。只有python程序是I/O密集型应用时,多线程才会对运行效率有显著提高(因在等待I/O的时,会释放GIL允许其他线程继续执行),而在计算密集型应用中,多线程并没有什么用处。考虑到要充分利用多核CPU的资源,允许python可以并行处理一些任务,这里就用到了python多进程编程了。multiprocessing是python中的多进程模块,使用这个模块可以方便地进行多进程应用程序开发。multiprocessing模块中提供了:Process、Pool、Queue、Manager等组件。
group:进程所属组,基本不用 target:进程调用对象(可以是一个函数名,也可以是一个可调用的对象(实现了__call__方法的类)) args:调用对象的位置参数元组 name:别名 kwargs:调用对象的关键字参数字典
is_alive():返回进程是否在运行 start():启动进程,等待CPU调度 join([timeout]):阻塞当前上下文环境,直到调用此方法的进程终止或者到达指定timeout terminate():不管任务是否完成,立即停止该进程 run():start()调用该方法,当实例进程没有传入target参数,stat()将执行默认的run()方法
authkey: daemon:守护进程标识,在start()调用之前可以对其进行修改 exitcode:进程的退出状态码 name:进程名 pid:进程id
实例一:传入的target为一个函数
#!/usr/bin/python #coding=utf-8 import time import random from multiprocessing import Process def foo(i): print time.ctime(), "process the %d begin ......" %i time.sleep(random.uniform(1,3)) print time.ctime(), "process the %d end !!!!!!" %i if __name__ == "__main__": print time.ctime(), "process begin......" p_lst = list() for i in range(4): p_lst.append(Process(target=foo, args=(i,))) #创建4个子进程 #启动子进程 for p in p_lst: p.start() #等待子进程全部结束 for p in p_lst: p.join() print time.ctime(), "process end!!!!!"实例二:传入的target为一个可调用对象
#!/usr/bin/python #coding=utf-8 import time import random from multiprocessing import Process class Foo(object): def __init__(self, i): self.i = i def __call__(self): ''' 使Foo的实例对象成为可调用对象 ''' print time.ctime(), "process the %d begin ......" %self.i time.sleep(random.uniform(1,3)) print time.ctime(), "process the %d end !!!!!!" %self.i if __name__ == "__main__": print time.ctime(), "process begin......" p_lst = list() for i in range(4): p_lst.append(Process(target=Foo(i))) #创建4个子进程 #启动子进程 for p in p_lst: p.start() #等待子进程全部结束 for p in p_lst: p.join() print time.ctime(), "process end!!!!!"实例三:派生Process子类,并创建子类的实例
#!/usr/bin/python #coding=utf-8 import time import random from multiprocessing import Process class MyProcess(Process): def __init__(self, i): Process.__init__(self) self.i = i def run(self): ''' #重写run方法,当调用start方法时,就会调用当前重写的run方法中的程序 ''' print time.ctime(), "process the %d begin ......" %self.i time.sleep(random.uniform(1,3)) print time.ctime(), "process the %d end !!!!!!" %self.i if __name__ == "__main__": print time.ctime(), "process begin......" p_lst = list() for i in range(4): p_lst.append(MyProcess(i)) #创建4个子进程 #启动子进程 for p in p_lst: p.start() #等待子进程全部结束 for p in p_lst: p.join() print time.ctime(), "process end!!!!!"当使用Process类管理非常多(几十上百个)的进程时,就会显得比较繁琐,这是就可以使用Pool(进程池)来对进程进行统一管理。当池中进程已满时,有新进程请求执行时,就会被阻塞,直到池中有进程执行结束,新的进程请求才会被放入池中并执行。
processes:池中可容纳的工作进程数量,默认情况使用os.cpu_count()返回的数值,一般默认即可 其他参数暂不清楚有什么用处……
apply(self, func, args=(), kwds={}):阻塞型进程池,会阻塞主进程,直到工作进程全部退出,一般不用这个 apply_async(self, func, args=(), kwds={}, callback=None):非阻塞型进程池 map(self, func, iterable, chunksize=None):与内置map行为一致,它会阻塞主进程,直到map运行结束 map_async(self, func, iterable, chunksize=None, callback=None):非阻塞版本的map close():关闭进程池,不在接受新任务 terminate():结束工作进程 join():阻塞主进程等待子进程退出,该方法必须在close或terminate之后执行
结果:
Fri Nov 18 13:57:22 2016 process begin...... Fri Nov 18 13:57:22 2016 process the 0 begin ...... Fri Nov 18 13:57:22 2016 process the 1 begin ...... Fri Nov 18 13:57:23 2016 process the 1 end !!!!!! Fri Nov 18 13:57:23 2016 process the 2 begin ...... Fri Nov 18 13:57:24 2016 process the 0 end !!!!!! Fri Nov 18 13:57:24 2016 process the 3 begin ...... Fri Nov 18 13:57:25 2016 process the 2 end !!!!!! Fri Nov 18 13:57:25 2016 process the 3 end !!!!!! Fri Nov 18 13:57:25 2016 process end!!!!!Queue主要提供进程间通信以及共享数据等功能。除Queue外还可以使用Pipes实现进程间通信(Pipes是两个进程间进行通信)
maxsize:用于设置队列最大长度,当为maxsize<=0时,队列的最大长度会被设置为一个非常大的值(我的系统中队列最大长度被设置为2147483647)
1、block为True,若队列已满,并且timeout为正值,该方法会阻塞timeout指定的时间,直到队列中有出现剩余空间,如果超时,会抛出Queue.Full异常 2、block为False,若队列已满,立即抛出Queue.Full异常
get(self, block=True, timeout=None)block为True,若队列为空,并且timeout为正值,该方法会阻塞timeout指定的时间,直到队列中有出现新的数据,如果超时,会抛出Queue.Empty异常 block为False,若队列为空,立即抛出Queue.Empty异常
运行结果:
Fri Nov 18 15:04:13 2016 put a to queue Fri Nov 18 15:04:13 2016 get a from queue Fri Nov 18 15:04:13 2016 put b to queue Fri Nov 18 15:04:13 2016 get b from queue Fri Nov 18 15:04:13 2016 put c to queue Fri Nov 18 15:04:13 2016 get c from queue Fri Nov 18 15:04:13 2016 put d to queue Fri Nov 18 15:04:13 2016 get d from queueManager是进程间数据共享的高级接口。 Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。Manager支持的类型有list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value和Array。 如下是使用Manager管理一个用于多进程共享的dict数据
#!/usr/bin/python #coding=utf-8 import time import random from multiprocessing import Manager, Pool def worker(d, key, value): print time.ctime(), "insert the k-v pair to dict begin: {%d: %d}" %(key, value) time.sleep(random.uniform(1,2)) d[key] = value #访问共享数据 print time.ctime(), "insert the k-v pair to dict end: {%d: %d}" %(key, value) if __name__ == "__main__": print time.ctime(), "process for manager begin" mgr = Manager() d = mgr.dict() pool = Pool(processes=4) for i in range(10): pool.apply_async(worker, args=(d, i, i*i)) pool.close() pool.join() print "Result:" print d print time.ctime(), "process for manager end"运行结果
Fri Nov 18 16:36:19 2016 process for manager begin Fri Nov 18 16:36:19 2016 insert the k-v pair to dict begin: {0: 0} Fri Nov 18 16:36:19 2016 insert the k-v pair to dict begin: {1: 1} Fri Nov 18 16:36:19 2016 insert the k-v pair to dict begin: {2: 4} Fri Nov 18 16:36:19 2016 insert the k-v pair to dict begin: {3: 9} Fri Nov 18 16:36:20 2016 insert the k-v pair to dict end: {3: 9} Fri Nov 18 16:36:20 2016 insert the k-v pair to dict begin: {4: 16} Fri Nov 18 16:36:20 2016 insert the k-v pair to dict end: {0: 0} Fri Nov 18 16:36:20 2016 insert the k-v pair to dict begin: {5: 25} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict end: {2: 4} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict begin: {6: 36} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict end: {1: 1} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict begin: {7: 49} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict end: {5: 25} Fri Nov 18 16:36:21 2016 insert the k-v pair to dict begin: {8: 64} Fri Nov 18 16:36:22 2016 insert the k-v pair to dict end: {4: 16} Fri Nov 18 16:36:22 2016 insert the k-v pair to dict begin: {9: 81} Fri Nov 18 16:36:23 2016 insert the k-v pair to dict end: {8: 64} Fri Nov 18 16:36:23 2016 insert the k-v pair to dict end: {6: 36} Fri Nov 18 16:36:23 2016 insert the k-v pair to dict end: {7: 49} Fri Nov 18 16:36:23 2016 insert the k-v pair to dict end: {9: 81} Result: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} Fri Nov 18 16:36:23 2016 process for manager end