Remake Quaternions

    xiaoxiao2021-03-25  111

    That said when quaternions are used in geometry, it is more convenient to define them as a scalar plus a vector.

    An equivalent definition of Quaternion ( R3 means 3D euclidean real vector space):

    Q={q=<s,v>|sR,vR3} 1. <s,0⃗ >=sRQ 2. <0,v>=vR3Q 3. <0,0⃗ >=0=0⃗ 


    Binary Operation +:Q×QQ

    <a,u>+<b,v>=<a+b,u+v> <script type="math/tex; mode=display" id="MathJax-Element-30"> + = </script> 1. s+v=<s,0⃗ >+<0,v>=<s,v> Q={q=s+v|sR,vR3} 2. <a,u>+<b,v>=<b,v>+<a,u> s+v=v+s=<s,v> 3. (Q;+) is an Abelian Group.


    Binary Operation : Q×QQ

    (a+u)(b+v)=a(b+v)+u(b+v)=ab+av+ub+uv=ab+av+bu+u×vuv=abuv+av+bu+u×v

    (×Cross ProductDot Product)

    Absorbing element of operator : 0 p,qQ,p0q0pq0 p=(a+u)q=(b+v)pq=0u×v=0...p=0q=0 is associative (a+u)(b+v)(c+w)=abc+abw+avc+avw+ubc+ubw+uvc+uvw uvw=(xi+yj+zk)(xi+yj+zk)(x′′i+y′′j+z′′k) Identity element of : 1Inverse of q (Q{0};) is a GroupThus, (Q;+;) is a Division Ring

    The Next: (Rodrigues’) Rotation Formula

    转载请注明原文地址: https://ju.6miu.com/read-6908.html

    最新回复(0)