UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

    xiaoxiao2021-03-25  239

    # -*- coding: utf-8 -*- import jieba, os import codecs from gensim import corpora, models, similarities from pprint import pprint from collections import defaultdict import sys import pickle from src.readfiles import ReadData from src.seg import JiebaSeg from scipy.sparse.csr import csr_matrix import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn import cross_validation from sklearn import preprocessing y_true = [0, 1, 2, 0, 1, 2] y_pred = [0, 2, 1, 0, 0, 1] y_true = [0,1] y_pred = [0,2] print metrics.precision_score(y_true, y_pred, average='macro') print metrics.precision_score(y_true, y_pred, average='macro')在预测数据中存在实际类别没有的标签时报此warning
    转载请注明原文地址: https://ju.6miu.com/read-6977.html

    最新回复(0)