leetcode60~Permutation Sequence

    xiaoxiao2021-03-25  190

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): “123” “132” “213” “231” “312” “321”

    Given n and k, return the kth permutation sequence. Note: Given n will be between 1 and 9 inclusive.

    n个数组成的全排列,共有n!种。如果最高位固定,那么就有(n-1)!种排列。 关键在于如何每次获取最高位呢?如果要找的是第k个排列,此时是把1..n存储到list集合中,那么index=(k-1)/(n-1)!即可,与集合中的下标对应,可以获得对应的元素值。

    k值的更新:k=k-index*(n-1)!,就是把前面的数全部除去,或k=k%(n-1)!

    public class PermutationSequence { public String getPermutation(int n, int k) { //存放1..n个数 List<Integer> list = new ArrayList<>(); StringBuilder sb = new StringBuilder(); //存放1..n的阶乘数 int[] factorial = new int[n+1]; factorial[0]=1; int sum=1; for(int i=1;i<=n;i++) { sum = sum*i; factorial[i] = sum; } for(int i=1;i<=n;i++) { list.add(i); } k--; for(int i=1;i<=n;i++) { //依次取出第1,2..n位上数 int index = k/factorial[n-i]; sb.append(String.valueOf(list.get(index))); //移除该数 list.remove(index); k = k-index*factorial[n-i]; } return sb.toString(); } }
    转载请注明原文地址: https://ju.6miu.com/read-731.html

    最新回复(0)