Spring整合Redis缓存

    xiaoxiao2021-03-25  156

     通常而言目前的数据库分类有几种,包括 SQL/NSQL,,关系数据库,键值数据库等等 等,分类的标准也不以,Redis本质上也是一种键值数据库的,但它在保持键值数据库简单快捷特点的同时,又吸收了部分关系数据库的优点。从而使它的位置处于关系数据库和键值数 据库之间。Redis不仅能保存Strings类型的数据,还能保存Lists类型(有序)和Sets类型(无序)的数据,而且还能完成排序(SORT) 等高级功能,在实现INCR,SETNX等功能的时候,保证了其操作的原子性,除此以外,还支持主从复制等功能。

    现在很流行用redis做缓存,本项目也先简单地将redis缓存整合到SSM项目之中,主要有以下几步:

    1.pom.xml中引入jar包

    <!--redis--> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-redis</artifactId> <version>1.6.1.RELEASE</version> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>2.8.0</version> </dependency>

    2.新建spring-redis.xml配置文件

    要启用缓存支持,我们需要在spring的配置文件中进行配置 。Redis 不是应用的共享内存,它只是一个内存服务器,就像 MySql 似的,我们需要将应用连接到它并使用某种“语言”进行交互,因此我们还需要一个连接工厂以及一个 Spring 和 Redis 对话要用的 RedisTemplate,这些都是 Redis 缓存所必需的配置: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:cache="http://www.springframework.org/schema/cache" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.2.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.2.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-4.2.xsd http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache-4.2.xsd"> <!-- 缓存的层级--> <context:component-scan base-package="com.lw.common.utils" /> <context:property-placeholder location="classpath:redis.properties" /> <!-- redis 相关配置 --> <bean id="poolConfig" class="redis.clients.jedis.JedisPoolConfig"> <property name="maxIdle" value="${redis.maxIdle}" /> <property name="maxWaitMillis" value="${redis.maxWait}" /> <property name="testOnBorrow" value="${redis.testOnBorrow}" /> </bean> <!-- redis单节点数据库连接配置 --> <bean id="JedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"> <property name="hostName" value="${redis.host}" /> <property name="port" value="${redis.port}" /> <property name="password" value="${redis.pass}" /> <property name="poolConfig" ref="poolConfig" /> </bean> <bean id="redisTemplate" class="org.springframework.data.redis.core.RedisTemplate"> <property name="connectionFactory" ref="JedisConnectionFactory" /> </bean> </beans> 在 redis.properties中设置了redis服务器的所需的参数: redis.host=127.0.0.1 redis.port=6379 redis.pass=password #控制一个pool最多有多少个状态为idle(空闲)的jedis实例 redis.maxIdle=100 redis.maxActive=300 # 表示当borrow(引入)一个jedis实例时,最大的等待时间,如果超过等待时间(毫秒),则直接抛出JedisConnectionException; redis.maxWait=3000 # 在borrow一个jedis实例时,是否提前进行validate操作;如果为true,则得到的jedis实例均是可用的 redis.testOnBorrow=true 配置完成后将配置文件引入到Spring配置文件中 <!-- 引入同文件夹下的redis属性配置文件 --> <import resource="spring-redis.xml" /> 3.定义redisCache类来实现对redis的操作 package com.lw.common.cache; import java.util.List; import java.util.Set; import javax.annotation.Resource; import org.springframework.dao.DataAccessException; import org.springframework.data.redis.connection.RedisConnection; import org.springframework.data.redis.core.RedisCallback; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; @Component public class RedisCache { public final static String CAHCENAME = "cache";// 缓存名 public final static int CAHCETIME = 60;// 默认缓存时间 @Resource private RedisTemplate redisTemplate; // private SimpleCacheManager cacheManager; public boolean putCache(String key, T obj) { final byte[] bkey = key.getBytes(); final byte[] bvalue = ProtoStuffSerializerUtil.serialize(obj); boolean result = redisTemplate.execute(new RedisCallback () { @Override public Boolean doInRedis(RedisConnection connection) throws DataAccessException { return connection.setNX(bkey, bvalue); } }); return result; } public void putCacheWithExpireTime(String key, T obj, final long expireTime) { final byte[] bkey = key.getBytes(); final byte[] bvalue = ProtoStuffSerializerUtil.serialize(obj); redisTemplate.execute(new RedisCallback () { @Override public Boolean doInRedis(RedisConnection connection) throws DataAccessException { connection.setEx(bkey, expireTime, bvalue); return true; } }); } public boolean putListCache(String key, List objList) { final byte[] bkey = key.getBytes(); final byte[] bvalue = ProtoStuffSerializerUtil.serializeList(objList); boolean result = redisTemplate.execute(new RedisCallback () { @Override public Boolean doInRedis(RedisConnection connection) throws DataAccessException { return connection.setNX(bkey, bvalue); } }); return result; } public boolean putListCacheWithExpireTime(String key, List objList, final long expireTime) { final byte[] bkey = key.getBytes(); final byte[] bvalue = ProtoStuffSerializerUtil.serializeList(objList); boolean result = redisTemplate.execute(new RedisCallback () { @Override public Boolean doInRedis(RedisConnection connection) throws DataAccessException { connection.setEx(bkey, expireTime, bvalue); return true; } }); return result; } public T getCache(final String key, Class targetClass) { byte[] result = redisTemplate.execute(new RedisCallback () { @Override public byte[] doInRedis(RedisConnection connection) throws DataAccessException { return connection.get(key.getBytes()); } }); if (result == null) { return null; } return ProtoStuffSerializerUtil.deserialize(result, targetClass); } public List getListCache(final String key, Class targetClass) { byte[] result = redisTemplate.execute(new RedisCallback () { @Override public byte[] doInRedis(RedisConnection connection) throws DataAccessException { return connection.get(key.getBytes()); } }); if (result == null) { return null; } return ProtoStuffSerializerUtil.deserializeList(result, targetClass); } /** * 精确删除key * * @param key */ public void deleteCache(String key) { redisTemplate.delete(key); } /** * 模糊删除key * * @param pattern */ public void deleteCacheWithPattern(String pattern) { Set keys = redisTemplate.keys(pattern); redisTemplate.delete(keys); } /** * 清空所有缓存 */ public void clearCache() { deleteCacheWithPattern(RedisCache.CAHCENAME+"|*"); } } 其中ProtoStuffSerializerUtil为一个序列化和反序列化 对象的工具类 package com.lw.common.utils; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.util.List; import com.dyuproject.protostuff.LinkedBuffer; import com.dyuproject.protostuff.ProtostuffIOUtil; import com.dyuproject.protostuff.Schema; import com.dyuproject.protostuff.runtime.RuntimeSchema; /** * 序列话工具 */ public class ProtoStuffSerializerUtil { /** * 序列化对象 * @param obj * @return */ public static byte[] serialize(T obj) { if (obj == null) { throw new RuntimeException("序列化对象(" + obj + ")!"); } @SuppressWarnings("unchecked") Schema schema = (Schema ) RuntimeSchema.getSchema(obj.getClass()); LinkedBuffer buffer = LinkedBuffer.allocate(1024 * 1024); byte[] protostuff = null; try { protostuff = ProtostuffIOUtil.toByteArray(obj, schema, buffer); } catch (Exception e) { throw new RuntimeException("序列化(" + obj.getClass() + ")对象(" + obj + ")发生异常!", e); } finally { buffer.clear(); } return protostuff; } /** * 反序列化对象 * @param paramArrayOfByte * @param targetClass * @return */ public static T deserialize(byte[] paramArrayOfByte, Class targetClass) { if (paramArrayOfByte == null || paramArrayOfByte.length == 0) { throw new RuntimeException("反序列化对象发生异常,byte序列为空!"); } T instance = null; try { instance = targetClass.newInstance(); } catch (InstantiationException | IllegalAccessException e) { throw new RuntimeException("反序列化过程中依据类型创建对象失败!", e); } Schema schema = RuntimeSchema.getSchema(targetClass); ProtostuffIOUtil.mergeFrom(paramArrayOfByte, instance, schema); return instance; } /** * 序列化列表 * @param objList * @return */ public static byte[] serializeList(List objList) { if (objList == null || objList.isEmpty()) { throw new RuntimeException("序列化对象列表(" + objList + ")参数异常!"); } @SuppressWarnings("unchecked") Schema schema = (Schema ) RuntimeSchema.getSchema(objList.get(0).getClass()); LinkedBuffer buffer = LinkedBuffer.allocate(1024 * 1024); byte[] protostuff = null; ByteArrayOutputStream bos = null; try { bos = new ByteArrayOutputStream(); ProtostuffIOUtil.writeListTo(bos, objList, schema, buffer); protostuff = bos.toByteArray(); } catch (Exception e) { throw new RuntimeException("序列化对象列表(" + objList + ")发生异常!", e); } finally { buffer.clear(); try { if (bos != null) { bos.close(); } } catch (IOException e) { e.printStackTrace(); } } return protostuff; } /** * 反序列化列表 * @param paramArrayOfByte * @param targetClass * @return */ public static List deserializeList(byte[] paramArrayOfByte, Class targetClass) { if (paramArrayOfByte == null || paramArrayOfByte.length == 0) { throw new RuntimeException("反序列化对象发生异常,byte序列为空!"); } Schema schema = RuntimeSchema.getSchema(targetClass); List result = null; try { result = ProtostuffIOUtil.parseListFrom(new ByteArrayInputStream(paramArrayOfByte), schema); } catch (IOException e) { throw new RuntimeException("反序列化对象列表发生异常!", e); } return result; } } 工具类又需要引入额外的jar包 <dependency> <groupId>com.dyuproject.protostuff</groupId> <artifactId>protostuff-core</artifactId> <version>1.0.8</version> </dependency> <dependency> <groupId>com.dyuproject.protostuff</groupId> <artifactId>protostuff-runtime</artifactId> <version>1.0.8</version> </dependency>至此Spring整合redis缓存的配置工作便准备完成,下面便可在service层使用 package com.lw.service; import javax.annotation.Resource; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.stereotype.Service; import com.lw.common.utils.RedisCache; import com.lw.dao.UserMapper; import com.lw.entity.User; @Service public class UserService { private static final Logger log = LoggerFactory.getLogger(UserService.class); @Resource private UserMapper userMapper; @Resource private RedisCache redisCache; public User getUserById(int userId) { String cache_key = RedisCache.CAHCENAME+"|getUserById"+userId; User user = redisCache.getCache(cache_key, User.class); if(user != null){ log.info("get cache with key:"+cache_key); }else { user = userMapper.selectByPrimaryKey(userId); redisCache.putCacheWithExpireTime(cache_key, user, RedisCache.CAHCETIME); log.info("put cache with key:"+cache_key); } return user; } } 当系统获取用户信息时,先从缓存中查找,如果缓存中由数据便直接返回,如果没有便从数据库中获取,并将结果存入到缓存中。
    转载请注明原文地址: https://ju.6miu.com/read-7833.html

    最新回复(0)