CS231n Assignment3--Q1

    xiaoxiao2021-03-25  136

    Q1: Image Captioning with Vanilla RNNs

    作业代码已上传至我github: https://github.com/jingshuangliu22/cs231n,欢迎参考、讨论、指正。

    LSTM_Captioning.ipynb

    Microsoft COCO

    idx_to_word <type 'list'> 1004 train_captions <type 'numpy.ndarray'> (400135, 17) int32 val_captions <type 'numpy.ndarray'> (195954, 17) int32 train_image_idxs <type 'numpy.ndarray'> (400135,) int32 val_features <type 'numpy.ndarray'> (40504, 512) float32 val_image_idxs <type 'numpy.ndarray'> (195954,) int32 train_features <type 'numpy.ndarray'> (82783, 512) float32 train_urls <type 'numpy.ndarray'> (82783,) |S63 val_urls <type 'numpy.ndarray'> (40504,) |S63 word_to_idx <type 'dict'> 1004

    Look at the data

    Vanilla RNN: step forward

    next_h error: 6.29242142647e-09

    Vanilla RNN: step backward

    dx error: 6.88735954327e-11 dprev_h error: 5.28932394133e-10 dWx error: 1.12554920911e-10 dWh error: 4.84496557569e-10 db error: 2.72330774095e-11

    Vanilla RNN: forward

    h error: 7.72846618019e-08

    Vanilla RNN: backward

    dx error: 2.70104774724e-08 dh0 error: 1.7454525052e-09 dWx error: 3.40035760677e-10 dWh error: 2.01095678956e-09 db error: 3.23168709094e-10

    Word embedding: forward

    out error: 1.00000000947e-08

    Word embedding: backward

    Word embedding: backward

    Temporal Affine layer

    dx error: 4.98623200795e-11 dw error: 7.54622091734e-11 db error: 5.76987410469e-12

    Temporal Softmax loss

    2.30256439876 23.025705242 2.32606402665 dx error: 2.45647211476e-08

    RNN for image captioning

    loss: 9.83235591003 expected loss: 9.83235591003 difference: 2.61124455392e-12

    W_embed relative error: 2.006287e-09 W_proj relative error: 2.435961e-09 W_vocab relative error: 2.411310e-09 Wh relative error: 2.055948e-08 Wx relative error: 3.195020e-07 b relative error: 1.777874e-09 b_proj relative error: 1.159276e-09 b_vocab relative error: 1.960674e-10

    Overfit small data

    (Iteration 1 / 100) loss: 82.463010 (Iteration 11 / 100) loss: 27.939999 (Iteration 21 / 100) loss: 8.880015 (Iteration 31 / 100) loss: 1.921411 (Iteration 41 / 100) loss: 0.639671 (Iteration 51 / 100) loss: 0.340682 (Iteration 61 / 100) loss: 0.287836 (Iteration 71 / 100) loss: 0.180632 (Iteration 81 / 100) loss: 0.187963 (Iteration 91 / 100) loss: 0.179619

    Test-time sampling

    转载请注明原文地址: https://ju.6miu.com/read-8618.html

    最新回复(0)